Eddysfone

Model 1680/3T

INSTALLATION NOTES OPERATING INSTRUCTIONS AND SERVICE DATA

Eddystone Radio

A MARCONI COMMUNICATION SYSTEMS COMPANY.

Eddystone Radio Limited,

Eddystone Works, Alvechurch Road, Birmingham B31 3PP, England. Telephone: 021 475 2231 Telex: 3370B1. Cables: Eddystone Birmingham

© EDDYSTONE RADIO LIMITED

1 A
£ %
1.1
± 1
: :
•

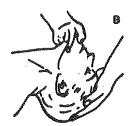
FIRST AID IN CASE OF ELECTRIC SHOCK

The Royal Life Saving Society recommends the Expired Air method of artificial respiration for use in any case of electric shock. It is comparatively simple and produces the best and quickest results when correctly applied. It also has an important advantage over the accepted manual methods in that it can be carried out in awkward situations in confined spaces, such as might well be encountered at sea.

However, where there is a facial injury, or if the patient is trapped in a face downwards position, it might be necessary to use a manual method of artificial respiration: of this type the Holger Nielson method is considered the most satisfactory

Directions for applying both methods are therefore given.

EXPIRED AIR METHOD OF ARTIFICIAL RESPIRATION


It is essential to commence artificial respiration without delay.

DO NOT TOUCH THE VICTIM WITH YOUR BARE HANDS until the circuit is broken.

SWITCH OFF. If this is not possible, PROTECT YOURSELF with dry insulating material and pull the victim clear of the conductor.

- 1. Lay the patient on his back and, if on a slope, have the stomach slightly lower than the chest.
- 2. Make a brief inspection of the mouth and throat to ensure that they are clear of obvious obstruction.
- Give the patient's head the maximum backwards tilt so that the chin is prominent, the mouth closed and the neck stretched to give a clear airway—Fig. A.
- 4. Open your mouth wide, make an airtight seal over the nose of the patient and blow. The operator's cheek or the hand supporting the chin can be used to seal the patient's lips—Fig. B, or if the nose is blocked, open the patient's mouth using the hand supporting the chin; open your mouth wide and make an airtight seal over his mouth and blow—Fig. C. This may also be used as an alternative to the mouth-to-nose technique.
- 5. After exhaling, turn your head to watch for chest movement whilst inhaling deeply in readiness for blowing again—Fig. D.
- 6. If the chest does not rise, check that the patient's mouth and throat are free of obstruction and the head is tilted backwards as far as possible. Blow again.

Send for medical assistance if possible.

HOLGER NIELSON METHOD OF ARTIFICIAL RESPIRATION

It is essential to commence artificial respiration without delay.

DO NOT TOUCH THE VICTIM WITH YOUR BARE HANDS until the circuit is broken.

SWITCH OFF. If this is not possible, PROTECT YOURSELF with dry insulating material and pull the victim clear of the conductor.

- 1. Lay patient face downwards with the forehead resting on the hands, placed one above the other.
- 2. Remove false teeth, tobacco or gum from patient's mouth: make a sure the tongue is free by firm blows between the shoulders with the flat of the hand.
- 3. Kneel on one knee at patient's head, one foot by the patient's elbow.
- 4. Place palms of your hands on patient's shoulder blades-Fig. A.
- 5. Rock forward until arms are vertical, the pressure should be light and without force (22-30 lb. is sufficient); this should take 2½ seconds—Fig. B.
- 6. Release the pressure by allowing the hands to slide down the arms to the patient's elbow (approximately 1 second) then raise the patient's arms and shoulders slightly pulling at the same time by swinging backwards (approximately 2½ seconds)—Fig. C, lower the patient's arms—Fig.D, and return your hands to the patient's shoulder blades.
- Repeat the movements taking 7 seconds for each complete respiration.
- 8. While artificial respiration is continued, have someone else-
 - (a) Loosen patient's clothing.
 - (b) Keep patient warm.
- If patient stops breathing, continue artificial respiration. Four hours or more may be required.
- 10. Do not give liquids until patient is conscious.

Send for medical assistance if possible.

HEALTH & SAFETY AT WORK ACT 1974 (UNITED KINGDOM)

The objective of this Act is to maintain or improve standards of health, safety and welfare of persons at work, and to protect persons at work and others, against risks to health, safety and welfare.

To the best of current knowledge, there is no risk to health or safety when Eddystone equipment is installed and operated properly, provided it has been properly maintained.

Precautions have been taken during the design and manufacture of this equipment to reduce the risks involved when repairing or maintaining the equipment but a certain degree of risk must always be present, particularly under fault conditions. The list below has been prepared to draw attention to the general risks envisaged; further information is available from Eddystone Radio Limited, at any time.

1. Electric Shock

Beware mains voltage and induced aerial voltages, ensure metal chassis is properly bonded to earth. Some units generate a high voltage even when the equipment is operated from a battery supply. Circuitry operating at low voltage is not necessarily at or near earth potential.

2. Physical Strain

Obtain assistance if a heavy unit is to be lifted or removed from an equipment rack.

3. Explosion and Implosion

Cathode ray tubes may implode if carelessly handled or dropped.

Use protective masks and gloves.

Electrolytic capacitors may explode if subjected to excessive voltage or voltage of incorrect polarity, and toxic materials may be released.

4. Burns

Resistors and power transistors (for example) may attain a high temperature. Avoid contact with these.

5. X-Rays

Cathode ray tubes operated at excessive voltage may generate harmful X-rays.

6. Soldering

Beware of flying droplets of molten solder and careless use of soldering irons (place in a proper stand when not in use). Avoid fumes. Do not handle food or drink, cigarettes, etc., without washing hands (risk from lead poisoning).

7. Cleaning Solutions

Certain solutions give off flammable or toxic fumes, e.g., trichloroethylene and its derivatives. Do not smoke and avoid inhalation of vapours.

8. Disposal of Faulty Components

Certain components contain toxic materials which may be released if the component is broken or disposed of carelessly, e.g., semi conductor devices containing poisonous metallic compounds; electrolytic capacitors containing poisonous organic compounds.

TREATMENT FOR BURNS

- 1. No attempt should be made to remove clothing adhering to the burn.
- 2. If other help is available, or as soon as artificial respiration is no longer required, cover the burn with a dry dressing.
- 3. Oil or grease in any form should not be applied.
- 4. Warm, weak, sweet tea may be given when the patient is able to swallow.

These instructions are approved by The Royal Life Saving Society. A handbook and charts dealing with Artificial Respiration can be obtained from the Society at 14 Devonshire Street, London, W.1.

NOTE : : AC MAINS CONNECTOR

The following information is issued in compliance with British Standard BS415:-

If the colours of the wires in the mains lead of this apparatus do not correspond with the coloured markings identifying the terminals in your mains connector (or plug) proceed as follows:-

- 2. The BLUE wire must be connected to the plug terminal marked "N" or coloured either BLUE or BLACK.
- 3. The BROWN wire must be connected to the plug terminal marked "L" or coloured either BROWN or RED.
- 4. If a 13 amp (BS1363) FUSED PLUG is used to facilitate connection to the supply outlet, the plug MUST be protected by a 3 AMP FUSE unless expressly declared otherwise (see para. 5 below). If another type of plug is used, a fuse of the appropriate rating must be fitted either in the plug, or the adaptor, OR AT THE DISTRIBUTION BOARD.

5. NOTE:

A 3 AMP fuse rating is sufficient for most equipments, but in some instances, to allow for switching surges, it may be necessary to use a 5 AMP FUSE RATING. In all instances where the higher rating is applicable, specific notice will be given in the INSTALLATION SECTION of the handbook at the POWER SUPPLIES subsection.

Eddystone

MODEL 1680/3T

Single Channel

1.6Mhz to 30Mhz

AM/SSB Receiver

Eddystone Radio

A MARCONI COMMUNICATION SYSTEMS COMPANY.

Eddystone Radio Limited,

Eddystone Works, Alvechurch Road, Birmingham B31 3PP, England. Telephone: 021 475 2231 Telex: 337081. Cables: Eddystone Birmingham

© EDDYSTONE RADIO LIMITED

ISSUE NUMBER ONE MAY, 1986

AMENDMENT RECORD

Amend No.	Pages subject to change	Amended by	Date
1			
2			
3	·	1	
4			
5			
6			
7			
8			
9.			
10	· · ·		
11			
12			
13			
14			
15			
16			-
17			***************************************
18			
19			
20		to the feet of the second seco	
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			

The Manufacturer reserves the right to modify the content of this publication as necessary to accommodate modifications, design improvements etc. Relevant Amendment Sheets will be incorporated at date of issue.

INDEX 1680/3T

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7	General Description & Performance Sur Circuit Description Mechanical Construction Installation Operation Maintenance Spares: Chassis Assy. Mod. Prefix 1 Main Board Mod. Prefix 2 RF/Remote Board Mod. Prefix 3 CIO Board Mod. Prefix 5 lst Osc. Mod. Prefix 6 RF Tuner Mod. Prefix 4 Audio Att/Relay Mod. Prefix 22	nmary	Pages 1-6 Pages 1-6 Pages 1 of 1 Pages 1-7 Pages 1-3 Pages 1-18 Pages 1-23 Pages 1-2 Pages 3-9 Pages 10-15 Pages 16-17 Pages 18-19 Pages 20-21 Pages 22-23
Table 4.1 Table 4.2 Table 6.1	Contents of Accessory Kit Remote Operation Requirements Plug-In Coil Board Frequency Ranges		Page 1 of Sec. 4 Page 5 of Sec. 4 Page 8 of Sec. 6
Figure 4.1 Figure 4.2 Figure 4.3 Figure 5.1	Mains Transformer Voltage Adjustment Ancillaries Connector (1PL1) (Viewed on Wiring Side) Remote Connector (1SK2) (Viewed on Wiring Side) Dual Diversity Operations	·	Page 2 of Sec. 4 Page 6 of Sec. 4 Page 7 of Sec. 4 Page 3 of Sec. 5
Illustrations			Page 10 of Sec. 6 Page 11 of Sec. 6 Page 12 of Sec. 6
Bound at rear	: Appendix A - Component Handling	I	Page Al
Printed Circui	it Boards:		
	CIO Board RF Tuner Board RF/Remote Board	11204P 11208P 11215PA 11214PA 11137PB 12608P	Reference 6 Reference 5 Reference 4 Reference 3 Reference 2 Reference 22

1680/3T Index Continued...

Circuits: BP1883 Interconnections Diagram
BP1895 CIO Module Reference 5
BP1896 Ist Oscillator Module Reference 6
BP1863 RF Remote Board Reference 3 (Part)
BP1872 Remote Control Reference 3 (Part)
BP1865 Audio Attenuator/Relay Board Reference 22
BP1874 (2 off) Main Board Reference 2

(Part 1 & 2) Main Board Reference

1680/3T Supplement for LSB Operation

Operation on this receiver is either AM or LSB with USB position inoperative.

Component Change

Filter type BP4706/30 is fitted at 2FL3, and filter type BP4727-10 at 2FL2 is omitted.

Wiring Change

Additional wiring connects 3/33 to LSB position on mode switch and to 2PL1/3. Wire connecting 3/37 to 3/40 is rewired connecting 3/37 to 3/41.

		± 15
		± 100
		£ 2
•		

Section 1

GENERAL DESCRIPTION AND PERFORMANCE SUMMARY

The Eddystone 1680/3T model is a compact low cost receiver for operation on one channel in the frequency range 1.6MHz to 30MHz with reception facilities for AM and USB. The receiver meets the requirements of Specification IT4660 over the range 1.6MHz to 3.8MHz.

Power supply arrangements can be chosen to suit the customer's installation requirements. The standard receiver operates from AC 40Hz-60Hz supplies in the range 100V/130V and 200V/260V or from a 24V DC supply (negative earth). For 12V or floating earth supplies an external converter can be supplied.

A single conversion circuit design is employed, with a rear panel output at the intermediate frequency of 1.4MHz to facilitate connection to ancillary equipment. Operation in dual diversity is also possible.

Remote control of all functions is available. Audio derived AGC is used for SSB reception and IF derived AGC for AM. A manual RF gain is provided which can be used in conjunction with or instead of the AGC.

Audio outputs are provided for connection to standard 600 ohm circuits, headset reception and 2 watts to an external loudspeaker in addition to 2 watts to an internal loudspeaker. Remote control of an audio attenuator provides up to 20dB attenuation of the 600 ohm output level.

GENERAL SPECIFICATION

Frequency

One channel in the range 1.6MHz to 30MHz

Intermediate Frequency

1400kHz

Reception Modes

AM SSB in upper sideband

Aerial Input

50 ohm unbalanced 30V RMS continuously applied will not damage the receiver

Power Supplies

AC 100V/130V and 200V/260V (40Hz-60Hz) (standard fitting) 24V DC with negative earth (standard fitting) 12V DC and 24V DC with floating earth (optional extra) Consumption 25VA.

Environmental

Operational : $-100_{\rm C}$ to +55°C -40° C to +70°C Storage

95% at +40^OC Humidity

Vibration Compatible with all marine specifications

Dimensions

483mm x 88mm (19 inches x 3.5 inches) Panel

282mm (11 inches) over cover plus 50mm (2 inches) for Intrusion 73

into rack cabling Weight 6.5Kg

Controls

Clarifier Provides fine tune control of nominal ±300Hz.

3 position (nominal OdB, -20dB and -40dB). Aerial

Attenuator

ON/OFF switch combined with the aerial attenuator. AGC Can be used with AGC 'ON' or 'OFF'. RF Gain

Selects AM or SSB. Mode

Adjusts audio output to headset and loudspeaker. AF Gain ٠

Standby Combined with AF gain removes HT from receiver leaving power

applied to ovens.

Preset control situated on rear panel adjusts 600 ohm audio level. Line Level

(Not affected by AF gain control setting).

Indicator Power applied.

LED's Receiver On.

Remote Operation

Control of all functions is possible by grounding the necessary input lines.

Clarifier : 8 lines
RF Gain : 5 lines
Mode : 1 line
AGC ON/OFF : 1 line
Aerial Attenuator : 2 lines

Remote Selection : 1 line to select local/remote

1 line to provide indication of correct selection.

Audio Attenuator : 1 line (analog voltage)

PERFORMANCE SPECIFICATION

Sensitivity

2uV for 16dB SINAD on SSB.

Selectivity

SSB (USB) -6dB +350Hz to +2700Hz -60dB -400Hz and +3400Hz

AM -6dB ±3.0kHz -60dB ±7.5kHz

Image Rejection

Greater than 50dB above 20MHz Greater than 70dB below 20MHz Greater than 80dB below 10MHz

IF Rejection

Greater than 90dB.

Audio Output

Line

600 ohm balanced or unbalanced (Preset to +6dBm maximum).

Headset

600 ohm nominal, output adjusted by AF gain control to +10dBm

maximum.

Loudspeaker

2 watts maximum.

External

2 watts maximum into 8 ohm.

Loudspeaker

Overall Response

Level within 6dB over 300Hz to 2.7kHz. Distortion better than 2%.

Blocking

With a wanted signal 60dB above luV, an unwanted carrier 10kHz off tune must be of a level greater than 110dB above luV to affect the output by 3dB.

Cross Modulation

With a wanted carrier 60dB above luV adjusted to give standard output at an audio frequency of 1400 Hz, an unwanted signal 20 kHz off-tune and modulated 30% at 1000 Hz must be of a level exceeding 100 dB above luV to produce an audio output greater than 30 dB below standard output.

Intermodulation (In Band)

The third order intermodulation products at 400Hz and 2200Hz produced by two carriers of level 80dB above luV tuned to produce outputs of 1000Hz and 1600Hz will be greater than 35dB below standard output when the individual carriers each provide an output equal to standard output.

Intermodulation (Out Of Band)

With a wanted signal of +6dBuV producing standard output, two unwanted signals adjusted to produce a third order intermodulation product at the wanted frequency, must each be of a level greater than 90dB above luV to produce standard output when neither signal is closer than 20kHz to the wanted frequency.

AGC Characteristic

Output level changes by less than 5dB for 100dB increase in input

from 2uV.

Output level changes by less than 3dB for 90dB increase in input from 5uV.

Stability

SSB

Within 10Hz over temperature range 10°C to 30°C for frequency range 1.6MHz-3.8MHz.

CIRCUIT DESCRIPTION

Aerial Attenuator

The aerial attenuator is situated on the RF/remote board reference 3 and is connected between the aerial input socket and the RF amplifier input coupling on 4Ll. A front panel switch ISW2 'SENSITIVITY/AGC' selects either a straight through position or one or both of two identical T networks to provide aerial attenuation of 0dB, 20dB or 40dB via relays 3RLC, 3RLD and 3RLE.

Protection against high induced aerial voltages is afforded by diodes 3D7-3D14 connected between aerial input and earth.

A further relay 3RLB is fitted for RF muting. This disconnects the aerial input and connects the attenuator input to earth, and is operated by applying +12V to pin 10 on the ancillary socket 1SK1.

RF Amplifier

Signals from the aerial attenuator are fed via 3SKA to a plug in RF amplifier board, reference 4, and then via 4PLA to a coupling coil on 4Ll. 4Ll with 4L2 forms a high Q bandpass tuned circuit, and signals are then amplified by 4TRl. A further tuned circuit 4L3 forms the collector load of 4TRl. From 4TRl the signal is then fed to the mixer via 4PLC/3SKC.

Mixer

Input to the high level double balanced mixer 3IC9 is via a toroid input transformer 3T1 and output is via a toroid output transformer 3T2. A potentiometer 3RV8 enables the supply current to the mixer to be adjusted for optimum intermodulation intercept point. If output signals from the mixer are then amplified by gain controlled stage 3TR5 before passing to the AM filter 2FL1.

1st Oscillator Module (Reference 6)

This circuit consists of a crystal oscillator 6TRl with level control 6TR2 and emitter follower output 6TR3. The frequency of the crystal oscillator can be varied over a small range from the front panel 'CLARIFIER' control 1RV5 via capacity diode 6Dl.

The complete oscillator module is oven controlled, the transistor 6TR4 being used as the heating element and temperature control is by bridge circuit 6IC2, thermistor 6TH1 and associated components.

1.4MHz IF Amplifier

1.4MHz IF signals from IF pre amplifier 3TR5 are fed to 2FL1. After filtering and amplification, signals from 2TR1 then pass to the LSB filter 2FL2 via a quad analog switch 2IC1. 2IC1 selects LSB or passes on the AM signals via tuned circuit 2L1 to a second quad analog switch 2IC2. 2IC2 selects either the output of the LSB filter or the AM filter (via 2L1). Signals from 2IC2 are fed to the main IF amplifier formed by 2IC14 and 2IC15.

The IF signal from 2ICl5 further amplified in 2TR2 and 2TR3 before passing to the SSB and AM detectors in 2IC4 which also generates carrier derived AGC used in AM mode. Carrier insertion to 2IC4 for SSB reception is from the CIO module, reference 5.

SSB or AM audio output from 2IC4 is selected via 1SW4, ('MODE') quad analog switch 2IC5.

Carrier Insertion Module Reference 5

Crystal 5XTL1 and 5TR2 form the carrier insertion oscillator which is oven controlled with 5TR3 as the heating element and bridge circuit 5IC1, thermistor 5TH1 and associated components as temperature control.

IF Pre Amplifier AGC

Output from analog switch 2IC2 is taken to amplifier stages 2TR8, 2TR7 and 2TR6 and then to detector and AGC generator 2IC7. From 2IC7 the AGC output is amplified by 3IC8 and applied to the 2nd gate of the IF pre amplifier stage 3TR5.

IF AGC

Audio AGC (SSB), is generated by 2IC11 which takes its input from 2IC4 via emitter follower 2TR4. Carrier AGC (AM), is derived from 2IC4. The appropriate AGC circuit is selected by quad analog switch 2IC10 which is controlled by front panel switch 1SW4 ('MODE'). After selection by 2IC10 the AGC voltage is amplified by 2IC9a, 2IC8b and 2IC8a before being fed to gain control IF amplifier 2IC14. The AGC voltage applied to 2IC14 is also fed to pin 4 on the ancillaries socket 1SK1. Provision is also made at this point for an external voltage from pin 11/1SK1 to reduce IF gain.

RF Gain

AGC voltage from 2ICl0 is summed into 2IC9a together with a DC voltage from the RF gain control network 2Rl20, 2RV8, and front panel control lRV1. When AGC is switched to 'ON' whichever voltage is the greater controls the gain of IF amplifier 2ICl4.

Audio Amplifiers

Audio output voltage from 2TR5 is fed to audio power amplifier 2ICl3 via front panel control 1RV4 (AF GAIN) and to audio line amplifier 2ICl2 via rear panel preset control 1RV3 (LINE LEVEL) and line audio attenuator. Audio output from the line amplifier is unaffected by the setting of the 'AF GAIN' 1RV4. Line output is taken via 2Tl to pins 6, 7 (ct) and 8 on 1SKl (ancillary socket). Audio output from ICl3 is taken to pin 1 on 1SKl and also the phone jack lJKl. The internal loudspeaker is enabled by linking sockets 1 and 2 on 1SKl.

Insertion of headset plug will disconnect the internal loudspeaker.

Line Attenuator

Audio output from the line level potentiometer 1RV3 is passed to the line attenuator 22TR3 via 22PL3. For local operation, 22TR3 operates at maximum gain with the output connected to 2ICl2 (Line Amplifier). For remote operation, analog gate 22IC2 is turned on allowing the voltage on pin 2 of 22PL3 to be applied to gate 2 of 22TR3 thus reducing the gain.

Remote Interface

All control functions (with the exception of audio gain level to loudspeaker and phones) can be remotely controlled via the internal circuitry on RF/remote board, reference 3.

With no connections made to remote connector IPL2, the receiver is automatically set for local operation with relays 22RLA, 22RLB and 22RLC energised. When pin 21 of 1PL2 is grounded, remote control is selected via 22TRl with relays 22RLA, 22RLB and 22RLC unenergised.

RF Gain

Remote control of the RF gain is via D/A converter 3ICl. Five input lines are provided giving 32 steps of gain control. The output of 3ICl is applied to one input of 3IC3a, the output of which is connected via the REMOTE/LOCAL relay 22RLB to 2Rl23. 22RLB disconnects the normal input to 2Rl23 from the RF gain control 1RVl. Presets 3RVl and 3RV2 adjust the range of DC voltage applied to 2Rl23.

Clarifier

Remote control of the clarifier is via D/A converter 3IC4. Eight input lines are provided giving 256 steps of frequency swing. The output of 3IC4 is applied to amplifier 3IC2a, the output of which feeds 3IC3b. The output of 3IC3b is connected via REMOTE/LOCAL relay 22RLA to pin 'F' of the 1st oscillator module. 22RLA also disconnects the normal input to pin 'F' from the 'CLARIFIER' control 1RV5. Presets 3RV3 and 3RV4 adjust the range of DC voltage applied to the 1st oscillator module (pin 'F').

Aerial Attenuator

Under remote control, aerial attenuator relays 2RLC, 2RLD and 2RLE are disconnected from the front panel switch 1SW2 via remote/local relays 22RLB and 22RLC, and connected to 3TRl and 3TR2.

With Remote Plug 1PL2 pins 14 and 15 earthed, 3TR1 and 3TR2 will be cut off. Relays 2RLC, 2RLD and 2RLE will now be unenergised giving 0dB attenuation.

With 1PL2 pin 14 earthed and pin 15 o/c, TR1 will be cut off and TR2 will conduct. Relays 2RLC and 2RLD will now be energised and 2RLE unenergised giving nominal 20dB attenuation.

With 1P12 pin 14 o/c and pin 15 earthed, TR1 will conduct and TR2 will be cut off. Relays 2RLC and 2RLE will now be energised and 2RLD unenergised giving nominal 40dB attenuation.

Mode

With remote plug 1PL2 pin 17 earthed AM mode is selected by 3IC5 pin 14 going 'high' allowing 3TR3 to conduct, thus removing the positive supply to the CIO module. Also pins 5 and 6 of analog switch 2IC10 will go 'high' thus selecting the AM detector and Carrier AGC. Pin 5 of 2IC1 and pin 13 of 2IC2 will also go 'high' bypassing the SSB filters and leaving only the AM filter 2FL1 in circuit. Pin 2 of 3IC5 will be 'low', selecting the audio output from the AM detector via 2IC5 and disabling the audio AGC via 2IC10.

With remote plug 1PL2 pin 17 open circuit, SSB mode is selected. 3IC5 pin 14 going 'low' turns off 3TR3 which results in the positive supply being applied to the CIO module. Pin 2 of 3IC5 will be 'high' selecting the audio from the SSB detector via 2IC5 and enabling the audio AGC via 2IC10. The LSB filter 2FL2 is selected by pin 6 of 2IC1 and pins 5 and 6 of 2IC2 going 'high'.

AGC

With pin 19 on remote plug 1PL2 earthed, pin 5 of 3IC5 will go 'high'. Pin 12 of 2IC10 will now go 'high' selecting AGC 'ON'. With pin 19 o/c the reverse function will select AGC 'OFF'.

Power Supply

The power input requirements are covered by two options. AC supplies 40 Hz-60 Hz 100 V/130 V and 200 V/260 V and +24 V DC supply with negative earth.

AC supplies are routed through a filtered mains socket to a transformer 1Tl and bridge rectifier 2D12-2D15. A fuse is incorporated in the 'LINE' side of the supply to the transformer. After rectification the voltage passes through a DC fuse to the reservoir capacitor 2C94 and to an 18V regulator 1ICl.

From 1IC1 the supply is fed directly to the CIO module and 1st oscillator module ovens and via 1SWla and 1SWlb to the remainder of the receiver.

DC supplies are connected to the ancillaries socket ISK1 pin 24 (+) and pin 25 (-).

Negative supply pin 25 is connected to main board, reference 2, pin 38.

The DC supply is fed to 1FS2 (DC Fuse) via protection diode (D11) which prevents damage due to accidental reversal of DC supply polarity. Front panel LED (1D3) 'SUPPLY' indicates presence of supply (AC or DC) and LED (1D2) 'RECEIVER' indicates receiver operational. 'RECEIVER' indicator will not be illuminated with AF gain control switch set to 'STANDBY'.

Section 3

MECHANICAL CONSTRUCTION

General

All versions of the 1680 Receiver have the same overall dimensions and are designed for direct mounting in 483mm (19 inches) racking. Fixing slots conform to a standard centre spacing of 76mm (3 inches) and the receiver should be secured to the rack by four M6 x 16mm chromium plated screws (Eddystone 11328P).

Damage to the front panel finish can be prevented by the use of insulated cup washers (Eddystone 11329P). The dimension of 50mm given in Section One for rear mounted plugs etc., includes sufficient space to allow cables entering the receiver in the same plane to be bent at right angles over a reasonable radius.

Internal Construction

Three printed circuit boards are used for the 1680 circuitry. One board, reference 3, contains the RF circuit, 1st oscillator module and the remote interface circuits. The second board, reference 2, contains IF circuits, AM and SSB filters BFO/CIO module, audio amplifiers, AGC amplifiers etc. The third board contains the line audio attenuator and local/remote relay switching. All board earths are connected to the frame.

The power unit is contained in a screening box at the right hand rear. A removable cover allows access for mains voltage adjustment. The bridge rectifier diodes and the reservoir capacitor are mounted on the main printed circuit board, reference 2. AC and DC fuses are accessible from the rear panel.

	\$1.9
	7 · · · · · · · · · · · · · · · · · · ·
	4 9
	:
	2 8
	4.3
	+ *
	:
	:
	*

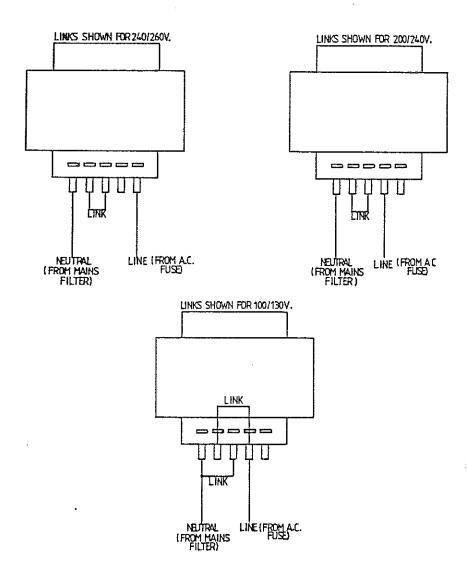
Section 4

INSTALLATION

General

The following table lists the contents of the accessory kit supplied with the 1680 range of receivers.

Table 4.1


Contents of Accessories Kit

Quantity	Description	Part Number
1	AC supply connector (complete with 2 metres of 3 core cable) (1SK3)	D4815
1	Ancillaries connector (25 pin plug complete with cover) (1PL1)	D5676
1	Remote connector (25 pin socket complete with cover) (1SK2)	D5677
1	Spare fuse (1A for AC) Spare fuse (2A for DC)	9816P 10577P
	The following available to special order	
1	Aerial connector (BNC plug 50 ohm) (1PL4)	8012P
1	IF output connector (BNC plug 50 ohm) (1PL5)	8012P
1	Box key for control knobs	9057P

Unless otherwise specified at the time of ordering all 1680 receivers are supplied set for 240V/260V operation.

The power transformer is located in a screened compartment at the right hand rear of the receiver. It will be necessary to remove the receiver top cover (ten M3 screws) and the power unit screened compartment cover (four M3 screws, two are located on the receiver back plate) to gain access for mains voltage adjustment.

Figure 4.1
Mains Transformer Voltage Adjustment

N.B. Disconnect from supply before adjusting taps or removing covers from receiver.

Installation for AC Working

1 Check that power transformer is set to the correct mains voltage tappings. (Refer to paragraph headed: Mains Transformer Voltage Adjustment).

2 Connect earth terminal on rear panel to rack frame.

3 Connect AC supply connector (1SK3) to AC input socket (1PL3) on the rear panel and connect the mains lead to the local supply: BROWN=LINE; BLUE=NEUTRAL; GREEN/YELLOW=EARTH.

4 Check that 'SUPPLY' indicator is illuminated. If not, check both fuses.

Installation for DC Working

- 1 Fit a red lead to pin 24 of 25 way ancillaries connector (plug lPL1). Fit a black lead to pin 25.
- 2 Connect red lead from pin 24 to +24V. Connect black lead from pin 25 to 0V (earth).
- 3 Check that 'SUPPLY' indicator is illuminated. If not, check DC fuse.

Aerial Input

Connect aerial to receiver with a BNC bayonet-lock co-axial connector (50 ohm plug 1PL5).

Audio Output

- If the internal loudspeaker is required link pins 1 and 2 on the ancillaries connector (1PL1). Insertion of the headset jack plug will mute the internal loudspeaker.
- 2 If external loudspeaker is required connect leads to pins 1 and 15 on ancillaries connector (1PL1). External speaker will now be muted if the phone jack is inserted. For unmuted operation connect to pins 1 and 14.

If headset reception is required insert jack plug in 'PHONES'socket on front panel. Insertion of jack plug disconnects internal loudspeaker and/or external loudspeaker. See (1) and (2).

4 For 600 ohm line output. Connect lines to pins 6 and 8 on the ancillaries connector (1PL1). Earths for these pins are pins 19 and 21. A balanced output can be provided by connecting pin 7 (ct) to earth (link to pin 20). The line level can be adjusted by the preset 'LINE LEVEL' control on the rear panel. (Maximum output +6dBm without excessive distortion).

RF Muting

RF muting can be achieved by connecting pin 10 of ancillaries connector (lPL1) to pin 23 (+12V) via a switch or to +12V DC from a transmitter send/receive switch.

IF Desense

IF desensitising can be carried out at the same time as RF muting by linking pin 11 to pin 10, or separately by applying +12V to pin 11.

Diversity Out

The IF AGC line is brought out to pin 5 of the ancillaries connector (1PL1) to enable diversity working to be used if required. (Refer to Section 5). (See figure 4.2).

Remote Operation

The receiver can be connected to permit remote control operation. All circuity is internal and access is via 25 way remote connector socket 1SK2. (See figure 4.3).

Table 4.2

Remote Operation Requirements

Function	Requirements	Pin Number
Clarifier	Earth as required to provide 256 steps (pin 1 MSB)	1 to 8
RF Gain	Earth as required to provide 32 steps (pin 9 MSB) Maximum gain with all lines o/c.	9 to 13
Remote Aerial Attenuator	o/c for maximum attenuation (40dB) o/c for medium attenuation (20dB) (14 and 15 earthed = 0dB attenuation).	14 15 14 and 15
Earth Return To Receiver		16
Remote Mode AM	Earth for AM. o/c for SSB.	17
Remote Selected	Output available to indicate remote selected	18
Remote AGC	o/c for AGC 'OFF' Earth or AGC 'ON'	19
Analog AF Gain	Control AF line output level	20
Remote Select	Earth for remote operation	21
Supply	+15V supply to remote interface adapter	25

Figure 4.2

ANCILLARIES CONNECTOR (1PL1)

VIEWED ON WIRING SIDE

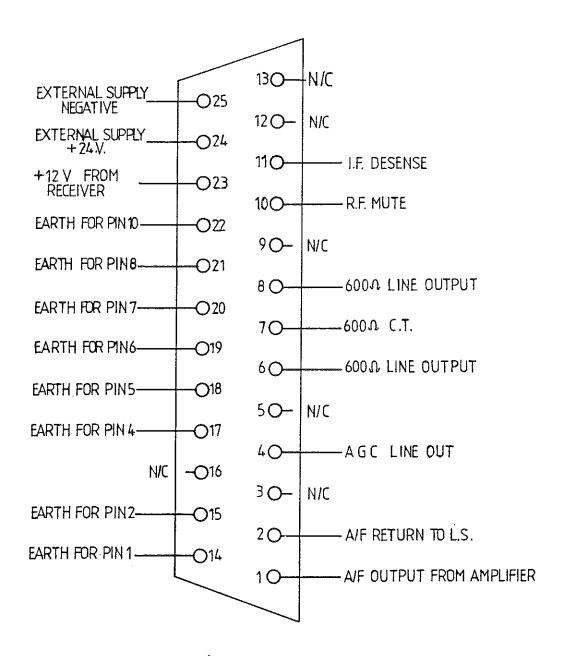
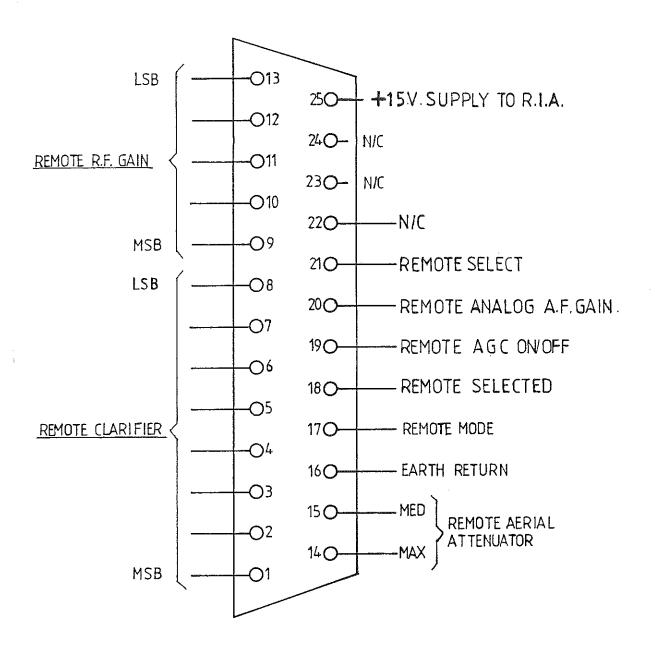



Figure 4.3

REMOTE CONNECTOR (1SK2)

VIEWED ON WIRING SIDE

Section 5

OPERATION

Control Functions

Sensitivity/ AGC A six position switch which selects either OdB, 20dB or 40dB of aerial attenuation with AGC 'OFF', or OdB, 20dB or 40dB with AGC 'ON'.

RF Gain

: Adjusts bias to main IF amplifier. Normally set to maximum gain position and only reduced when it is desired to reduce the sensitivity of the receiver.

Clarifier

changes reception frequency by approximately 300Hz either side of the 1st oscillator centre frequency by varying the bias on a varactor-tuned circuit. Adjust for optimum signal reception.

Mode

Two position switch which selects the appropriate circuitry to receive AM or USB.

AF Gain/ Standby This controls the audio output level from the front panel jack socket, the internal loudspeaker and external loudspeaker.

In the 'Standby' position the positive supply to the receiver circuits is switched off but power is still fed to the crystal ovens to minimise receiver setting time.

Line level (on rear panel) controls audio output to 600 ohm lines (maximum +6dBm).

Setting-Up Procedure

- 1 For details of power supply connectors refer to the paragraphs in Section 4 (Installation) appropriate to the intended input voltage.
 - Check that the oven supply indicator is illuminated.
- 2 Check that the ancillaries plug 1PL1 is fitted, with any external functions wired as instructions in Section 4.
- 3 Connect the aerial lead to the aerial input socket ISK4 by means of a BNC plug.
- 4 Set the following controls to the positions stated:-

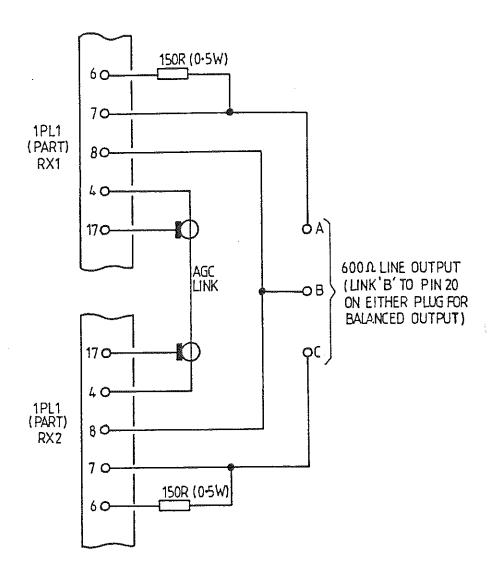
Sensitivity/AGC Switch to 'AGC ON' and 'MAXIMUM'.

RF Gain Control Clarifier Control : Fully clockwise: Mid-position

Mode

: Desired reception mode

- 5 Advance the AF gain control from the 'Standby' position, and check that the 'Receiver' LED becomes illuminated and that the desired signal can be heard. If residual aerial noise is high in the absence of a signal, operator discomforts can be avoided by backing off the RF gain control in an anti-clockwise direction.
- 6 Adjust the clarifier control for optimum reception.
- 7 If a strong signal on an adjacent channel interferes with the normal working of the receiver, the RF signal from the aerial can be reduced by setting the sensitivity/AGC switch to 'MEDIUM' or 'MINIMUM' depending on signal strength. If attenuation is altered the settings of the other controls should be checked and re-adjusted if necessary to suit prevailing conditions.
- 8 For remote control operation, make necessary connections from 1SK2 to remote interface adapter or controller, and check functions as above.


Dual-Diversity Operation

Two receivers can be operated in dual-diversity mode by (a) interconnecting their diversity outputs (pin 4) ancillary plug (IPL1) and (b) combining their 600 ohm line outputs as shown in Figure 5.1.

(Co-axial cable should be used to connect the diversity AGC outputs).

Figure 5.1

Dual-Diversity Operation

	\$ ⁵
	g th
•	f a
	1.1
	4.3
	ţ
	·

MAINTENANCE

General

The basic design features of the 1680 series of receivers ensure that these are extremely reliable in service. Consequently, these receivers require very little in the way of maintenance, even when in continuous use under arduous operating conditions.

This section of the handbook gives guidance for simple operations, such as changing fuses etc., and then progresses to more detailed instruction on performance testing and re-alignment.

A comprehensive analysis of all circuit voltages for reference when carrying out fault-finding, is included at the end of section 6, and should be used in conjunction with the circuit diagrams bound at the rear of this handbook.

Fuse Replacement

Two screw-in type fuse holders are located on the rear panel of the receiver. The AC fuse is rated at 1A and the DC fuse at 2A. Spare fuses are included in the accessory kit supplied with each receiver and additional spares may be ordered by quoting Eddystone part number 9816P for the 1A fuse and 10577P for the 2A fuse.

CIRCUITRY ACCESS AND SUB-ASSEMBLY REMOVAL

GENERAL

Removal of the receiver top cover is achieved by removing ten 3mm screws.

All preset potentiometers, variable inductors etc., are immediately accessible, with the exception of those contained in separately screened modules.

In the extremely unlikely event of component failure, access can be gained to the underside of the printed circuit boards as follows:-

Audio Attenuator Board

Removal of three M3 pillars allows the board to move away from the rear panel. Complete removal of the board is possible by further unplugging the connectors on this board.

RF/Remote Board

Unsolder leads to pins 59, 62, 63 and 64 on the RF/remote board. Remove seven 3mm screws, the board can now be hinged upwards to the right of the receiver for access to the printed track. Carefully note lead colours and positions to facilitate correct replacement.

Main Board

Unplug PL1 and PL2 on the main board. Remove seven 3mm screws, the board can now be hinged upwards to the front of the receiver for access to the printed track.

Power Supply Unit

Access to the power supply unit can be gained by removing four 3mm screws (two inside the receiver and two on the rear panel).

CIO Module

Access to the CIO module is achieved by sliding off the spring clip retaining the outer screening cover. The cover can now be removed and also the inner screened box lid to enable adjustments or measurements to be made. Any component replacement requires the complete unit to be unsoldered from the main printed circuit board.

1st Oscillator Module

Access to the 1st oscillator module is by the same means as the CIO module except that the outer screening cover is retained by two spring clips. As previous unit, any component replacement requires the complete unit to be unsoldered from the RF/remote board.

RF Tuner Board

The RF tuner board is plugged into two sockets on the RF/remote board. Printed circuit board guides are fitted to facilitate insertion of the board and to provide support. A screening box surrounds the RF tuner board.

PERFORMANCE TESTING

Test Equipment

The following equipment in the Marconi Instrument range is recommended for performance testing and re-alignment of the 1680 series of receivers.

TF2022 MF/HF AM/FM Signal Generator

Frequency range: 10kHz to 1000MHz

TF2331 Distortion Factor Meter

Fundamental range 20Hz-20kHz. Distortion and noise from 0.05%. Built-in demodulator.

TF1414A Counter

Frequency measurement to 40MHz. 10mV sensitivity. Six digit read-out.

Telequipment Oscilloscope D83

DC-50MHz Bandwidth

TF893A 10 Watt AF Power Meter

Frequency range 20Hz-20kHz. Five power ranges 1mW-10W. Impedance 2.5 ohm to 20 kohm in 48 steps. Direct calibration in watts and dBm.

Overall performance check: If substandard performance is suspected, withdraw the receiver from service and carry out the overall performance check given in the next paragraphs.

- a) Connect RF signal generator to aerial input socket (1SKA) using BNC connector.
- b) Connect AF power meter (matched to 600 ohm) to pins 6 and 8 on the ancillaries connector 1PL1.

Page 4 of Sec. 6

c) Set the receiver controls as follows:

Sensitivity/AGC - OdB/AGC ON

RF Gain - Maximum (Clockwise)
Clarifier - Middle Position

Mode - USB

AF Gain - Middle Position

Line Level - Normally preset to +6dBm output for lmV at aerial

(Rear Panel) socket.

- d) Tune RF signal generator to the appropriate carrier frequency +lkHz, and slowly increase the generator output level. Note the AF output displayed on the power meter. As soon as this ceases to increase (showing AGC threshold) note the RF input level: this should not be greater than luV.
- e) If the overall sensitivity of the receiver as measured above is found to be low, carry out the IF sensitivity checks detailed in the following paragraph.

IF Sensitivity Check

- a) Connect AF power meter (matched to 600 ohm) to pins 6 and 8 of ancillaries connector 1PL1.
- b) Connect the output lead from the signal generator to pins 1 and 2 (earth). Set generator frequency to 1399kHz. (It is not necessary to disconnect co-axial cable on pins 1 and 2).
- c) Set controls as for overall performance check.
- d) Check that the signal generator output level does not exceed 2uV to give an AF output reading of OdBm.
- e) If the above check does not reveal the reason for low overall sensitivity proceed with stage testing.

Re-Alignment and Stage Testing

General: Close tolerance components are used in all tuned circuits throughout the receiver, and re-alignment is not likely to be required unless coils and/or associated components have been changed.

Detailed instructions for re-aligning all preset circuits are given in the following paragraphs, on the assumption that the necessary adjustments will only be carried out by skilled personnel.

IF Alignment

- a) Set 'AGC' to 'OFF', 'MODE' to 'AM' and 'RF GAIN' to 'MAXIMUM'. Adjust 2RV6 fully anti-clockwise, 2RV2 mid-position, 2RV4 mid-position, 2RV7 mid-position. Set 2RV8 to give 3.0 volts on slider of RF gain when set at maximum.
- b) Connect signal generator at 1.4MHz with 30% modulation at 1kHz to pins 1 and 2 (earth) of IF/AF printed circuit board (reference 2). (There is no need to disconnect co-axial cable already on these pins).
- c) With generator output level at 10uV, adjust L1 and L2 for maximum output, reducing RF carrier input if necessary to prevent overloading. Turn off modulation, and adjust 2RV7 to give 230mV RMS on the coax link adjacent to 2L2 for a generator output level of 10uV.
- d) Set 'AGC' to 'ON', increase modulation depth to 50% and generator output level to lmV. Set 'LINE LEVEL' for lmW into 600 ohm with lRV1.
- e) Change signal generator frequency to 1.399MHz and remove modulation. Change 'MODE' to 'USB' and adjust 2RV1 to give same audio level.
- f) Check that S/N for 2uV input (SSB) is of the order 10dB.
- g) Set 'MODE' to 'AM' and 'AGC' to 'OFF'. Adjust signal generator to 1.4MHz, 30% modulation at lkHz, and connect to the secondary of T2 on RF printed circuit board (reference 3).
- h) Adjust L1, L2 and L3 for maximum output. Re-adjust signal generator to 1.399MHz, remove modulation, set receiver 'MODE' to 'USB' and check that the S/N with 2uV input is of the order 12dB.

i) Check the voltage on pin 6 of 3IC8 and adjust 3RV7 if necessary to give 4.0V. Check the voltage across 3R41 and adjust 3RV8 if necessary to give 0.5V, (starting from control fully clockwise).

Channel Re-Alignment

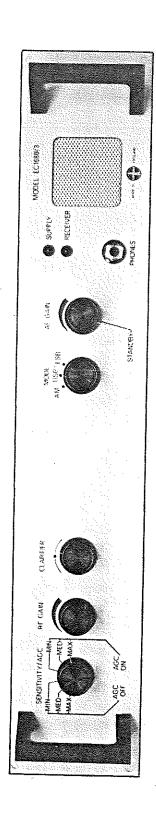
- a) Check injection voltage to 3IC9 at terminations 51 and 52 (earth) is between 100mV and 500mV RMS. The normal injection voltage is 300mV but because of the wide tuning range this may fall at the higher frequencies, and the mixer is designed to operate satisfactorily between 100mV and 500mV.
- b) Connect signal generator to 'AERIAL INPUT' socket, tuned to signal frequency (crystal frequency minus 1.4MHz), and set the generator outut to give audible output.
- c) Tune 4C2, 4C4 and 4C9 for maximum output (adjust 4L1, 4L2 and 4L3 if necessary for trimmers to tune).
- d) Set 4RVl on coil board to give a 12dB SINAD on SSB with luV input to aerial socket.
- e) Adjust 2RV7 to give an AGC threshold of luV. Range of RF gain control should be of the order of 70dB and can be adjusted with 2RV6. Adjustment of 2RV6 may require slight re-adjustment of 2RV7.
- f) Adjust 2RV2 to give a front end AGC threshold of +47dB/uV when measured on Gate 2 of 3TR5.
- g) Adjust 3RV9 and 3RV11 to give a clarifier range of ±300Hz.
- h) If using 'REMOTE' working, select 'REMOTE' and adjust 3RV3 and 3RV4 to give a clarifier range of ±300Hz. Adjust 3RV1 and 3RV2 to give the same RF gain control range as 'LOCAL'.

Changing Channel Frequency

- a) Remove lids from 1st oscillator module and fit crystal for required frequency (signal frequency plus 1.4MHz).
- b) Fit appropriate plug-in RF coil board for frequency required (see table 1).
- c) Check injection voltage to 3IC9 at terminations 51 and 52 (earth) is between 100mV and 500mV.
- d) Connect signal generator, tuned to signal frequency to 'AERIAL INPUT' socket and set generator output level to give audible output.
- e) Tune 4C2, 4C4 and 4C9 for maximum output, reducing signal generator level to luV. (Adjust 4L1, 4L2 and 4L3 if necessary to enable trimmers to tune).
- f) Adjust 4RVl to give a 12dB SINAD on SSB with luV input.

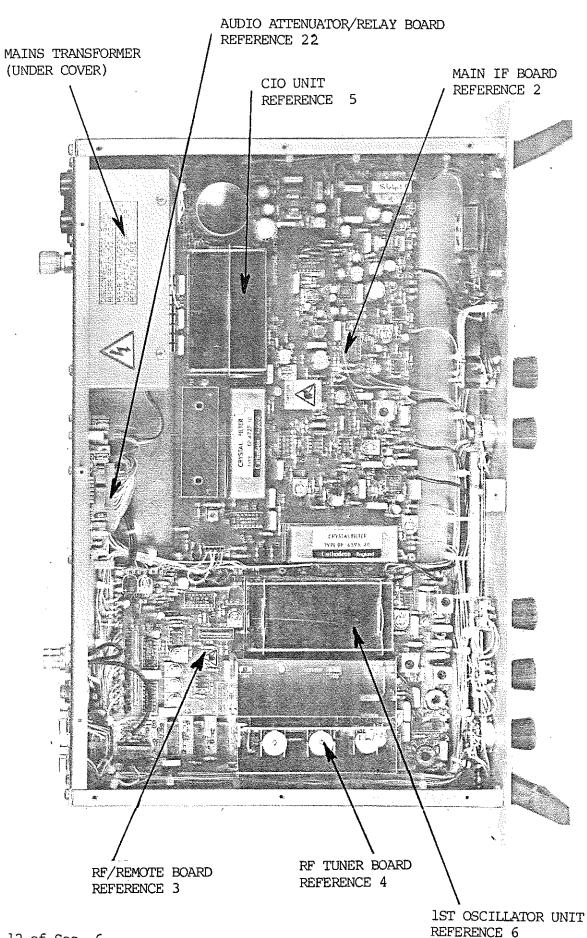
Plug-In Coil Board Frequency Ranges

Table 6.1


Frequency Range	RF Coil Board Number
400kHz to 535kHz 1.6MHz to 3.0MHz 3.0MHz to 5.7MHz 5.7MHz to 10.8MHz 10.8MHz to 20.0MHz 20.0MHz to 30.0MHz	LP3768/12 LP3768/13 LP3768/14 LP3768/15 LP3768/16 LP3768/17

1680/3T Crystal Specification

Style HC36/U
AT CUT
Fundamental Mode
Initial Tolerance ±10 PPM at 65°C
Frequency Variation ±0.5 PPM over 65°C ±2°C
Drive Level lmW
To tune with 15pf for crystal frequencies less than 8MHz
To tune with 20pf for crystal frequencies above 8MHz
For frequencies above 20MHz style HC42/U
may be used with Eddystone crystal adaptor LP3768/18
(Fundamental crystals in HC36/U not readily available above 20MHz)
Crystal frequency = signal frequency + 1.4MHz.


1680/3 Crystal Specification Carrier Insertion Oscillator)

Style D
AT CUT
Fundamental Mode
Initial tolerance ±10 PPM at 65°C
Frequency variation. Better than ±5 PPM over 65°C ±7°C
Drive level lmW
Tuning capacity 30pf
Frequency 1400.0kHz

1680/3T RECEIVER TOP INTERNAL VIEW

VOLTAGE TABLES

Chassis Reference 1

Integrated Circuits

Pin	Input	Output
ICl	23.5	18.0V

Main Board Reference 2

Integrated Circuits

Pin	Input	Output
IC6	18.01V	11.95V

Transistors

Pin	е	b	С
TRl	0.39	1.13	5.01
TR2	2.22	2.94	11.86
TR3	1.68	2.39	11.63
TR4	2.9	3.55	5.94
TR5	2.7	3.38	8.34
TR6	4.54	5.25	10.8
TR7	2.72	3.4	11.23
TR8	2.72	3.4	8.3
TR9	0,	0.6	7.88
TR11	0	0 0.68	14.8 O (With Remote ON)

Main Board Reference 2 Continued....

Integrated Circuits

Pin	1	2	3	4 .	5	6	7	8	9	10	11	12	13	14
ICl	5.01	5.0	0 (5.0) ¹	5.0	0 (10.15) ¹	10.4	0	5.01	5.01	0	5.01	0 (10.4) ²	0 (10.42) ²	11.95
IC2	0 (3.73) ¹	3.73	3.73	3.73	10.19 (0) ¹	10.4 (0)1	0	3.73 (0) ¹	3.73	3.73	0 (3.73) ²	0 (10.4) ²	0 (10.15) ¹	11.92
IC4	0.7	0.96	0.25	0.7	0	0	0	3.11	6.23	3.57	0	1.33	0	0.7
IC5	3.59 (0)1	3.59	3.59	(3.59) ¹	0 (11.41) ¹	9.87 (0)1	0	0	(11.41) ¹	3.59	3.59	9.97	9.87 (0) ¹	11.53
IC7	0	0.74	0.72	0.95	0.34	0.7	6.25	1.35	-	-	-	-	-	-
IC8	5.94	3.75	3.75	0	3.81	3.84	1.73	11.96	-	-	-		-	_
IC9	1.57	1.57	1.57	0	9.84	1.9	9.96	11.97	-	-	-	•	_	-
IC10	0.48 (0) ¹ (0		0.5	86 ()	0 (0.15) (1	0.15)1	o o.	.87	(0.87)	² 1 ⁰ (e.o	0.9)15	10.46 0.26) ¹ (0	9.87)1 11	.96
IC11	1.15	0.43 (0) ¹	0.98	6.54	1.09	0.64	0	0	•	-	-	_	-	_
	10.1	0	0	9.81	0.73	1.39	5.09	0	0	0	0	5.23		_
IC12														
IC12	18.0	0	0	17.61	0.72	1.49	8.92	0.14	0	0	0	9.37	-	_
IC13		0 10.5		17.61 3.5	0.72 5.2	1.49 3.5	8.92 0	0.14	0	0	0 	9.37	-	-
IC13	10.5		0		•				0 -	0 - -	o 	9.37	- -	- -
IC13	10.5	10.5	0	3.5	5.2	3.5	0	10.5	0 - -	-	o -	9.37	- -	- -
IC13	10.5	10.5	0	3.5	5.2	3.5	0	10.5	0 -	0 - -	0	9.37	- -	- - -
IC13	10.5	10.5	0	3.5	5.2	3.5	0	10.5		0 -	0	9.37	-	- -

RF/Remote Board Reference 3

Integrated Circuits

Pin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
IC1	0	0	1.62	1.77	0	0	0	4.81	4.77	4.77	4.77	4.74	4.77	2.49	2.6	2.6
IC2	1.63	3.59	3.57	0	2.21	2.22	1.92	14.77	-	-	-	-	-	_	-	_
IC3	2.01	3.6	3.68	0	2.53	2.53	5.08	14.77	-	-	-	_	_	_	_	•
IC4	0	0	1.6	1.74	4.78	4.78	4.78	4.81	4.78	4.78	4.78	4.78	4.7B	2.53	2.53	2.53
IC5	11.6 (11.45)	0	11.6 (11.45)	11.96 (0)	10.46 (0)	11.6 (11.45)	10.33 (0)	0	10.4	11.6 (11.45)	0	0	11.6 (11.45)	0	11.6 (11.45)	11.6 (11.45
ICB	-	2.14	2.12	0	- .	3.94	10.98	-	-	-	-	_	_	_	_	-
IC9	-	•	11.44	7_8	2.0	-	•	-	-	-	2.99	5.23	5.23	11.44	_	_

RF/Remote Board Reference 3 Continued...

Transistors

Pin	е	b	С	
TRl	0	0.67 (0.75)	0 (0.13)	
TR2	0	0.67 (0.75)	0 (0.11)	
TR3	0	0	18.04	
TR4	9.81	0	0	
Pin	s	gl	g ²	d
TR5	2.19	1.87	3.94	10.74

() Remote (Local switched to 'Remote')

RF Unit Reference 4

Transistors

Pin	е	b	C.
TRl	3.04	3.77	11.89

CIO Module Reference 5

Transistors

Pin	е	b .	С
TR2	0.79	1.12	7.48
TR3	0	will vary with temperature	18.03

Integrated Circuits

Pin	1	2	3	4	5	6	7	8
IC1	_	Will vary with tempera	3.93	0		Will vary with temper	18.03	_

1st Oscillator Module Reference 6

Transistors

Pin	е	b	С
TRI	0.53	0.93	12.4
TR2	0	0.64	5.7
TR3	6.6	7.3	14.8
TR4	0	will vary with temperature	18.03

Integrated Circuits

Pin	1	2	3	4	5	6	7	8
ICl	_	will vary with temperature	3.92	0		will vary with temperature	18.03	

Audio Attenuator Board

Transistors

LOCAL

REMOTE

				 		· ·
	е	b	С	е	b	c
TR1	0	0.66	0	0	0	14
TR2	0	0.66	0	0	0	14.2

	Source	G1	G2	Drain
TR3	2.45	2.5	4	8

Integrated Circuits

Pin	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Remot IC2	e 0	0	0	0	0	0	0	0	0	4.0	4.0	14.2	14.2	14.3
Local IC2	0	0	0	0	0	0	0	0	0	3.9	0	0	14.2	14.1

Pin	Input	Output
ICl	23	15

ALL VOLTAGES TAKEN ON FLUKE DIGITAL VOLTMETER

CONTROLS SET AS FOLLOWS: (UNLESS OTHERWISE STATED IN NOTES)

Sensitivity AGC - Maximum/AGC ON NO SIGNAL INPUT

RF Gain - Maximum (Clockwise)
Clarifier - Middle Position

Mode - USB

AF Gain - Middle Position

Section 7

SPARES 1680/3T RECEIVER

Spares for Chassis Assembly Module Prefix l

Variable Resistors

Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
1RV1 1RV2 1RV3 1RV4 1RV5	10k 10k 10k 10k 10k	20% 20% 20% 20% 20% 20%	0.5W 0.5W 0.25W 0.25W 0.5W	Lin Carbon Lin Carbon Log Carbon Log Carbon* Lin Carbon

^{*}Ganged with 1SWla and 1SWlb.

Integrated Circuits

Circuit Ref.	Type	Manufacturer	Description
licl	MC7818CT	Motorola	Voltage Regulator

Diodes

Circuit Ref.	Туре	Manufacturer	Description
1D1	V168P	Telefunken	LED (Red)
1D2	V168P	Telefunken	LED (Red)

Capacitors

Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
IC1	lu	+50% -20%	100V	Electrolytic

Resistors

Circuit Ref.	Value	Tolerance	Power Rating.	Туре
1R1 1R2 1R3	lk lk	5% 5%	0.33W 0.33W	Standard Film Standard Film
1R3 1R4	8R2	5%	2.5W	Not fitted Wirewound

Switches

Туре	Description	Part Number
1SW1	2P/2W (Ganged with RV4)	11342P
1SW2	Switch Spindle/Clicker 2P 6W	11268P*
1SW3	Switch Spindle/Clicker 1P 3W	11266P*

^{*}Adjustable Stop Clicker.

Transformer

Circuit Ref.	Description	Part Number
lTl	Mains Transformer	11341P

Miscellaneous

1PL3 1SK4/1SK5 1PL2 1SK1 1JK1	Mains Connector/Filter BNC Connector 50 ohm 25 way Connector (Male) 25 way Connector (Female) Phone Jack Loudspeaker Fuse Holder	9715P 7225P 11153P 10976P 6660P 10558P 9458P	
---	--	--	--

Main Board Module Prefix 2

Capacitors

Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
2C1 2C2 2C3 2C4 2C5 2C6 2C7 2C8 2C9 2C10 2C11 2C12 2C13 2C14 2C15 2C16 2C17 2C18 2C19 2C20 2C21 2C22 2C23 2C24 2C25 2C26 2C27 2C28 2C29	100n 10n 10n 10n 10n 10n 10n 10n 10n 10n	20% +80% -20% 20% +80% -20% +80% -20% +80% -20% +80% -20% +80% -20% +80% -20% +80% -20% 1% +80% -20% 20% +80% -20% +80% -20% +80% -20% +80% -20% +80% -20% +80% -20% +80% -20%	100V 25V 100V 25V 25V 25V 25V 25V 25V 25V 25V 25V 25	Polyester Ceramic Disc Polyester Ceramic Disc Polystyrene Ceramic Disc Polyester Ceramic Disc Ce
2C30 2C31 2C32 2C33 2C34 2C35 2C36 2C36A 2C37 2C38 2C39 2C40 2C41 2C42 2C42 2C43 2C44	100n 100n 1n6 10n 10n 100n 100n 100u 1u 47u 10n 10n 10n 10n 10n 10n 10n	20% 20% 1% +80% -20% +80% -20% 20% 20% 20% +50% -20% +50% -20% +50% -20% +80% -20% +80% -20% +80% -20% 20%	100V 100V 160V 25V 25V 100V 50V 100V 10V 100V 25V 25V 25V 25V	Not Allocated Polyester Polyester Polystyrene Ceramic Disc Ceramic Disc Polyester Ceramic Multi-Layer Polyester Electrolytic Electrolytic Electrolytic Ceramic Disc Ceramic Disc Ceramic Disc Polyester

Capacitors Continued.....

		<u> </u>		
Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
2C45	lu	+50% -20%	100V	Electrolytic
2C46	10u	+50% -20%	50V	Electrolytic
2C47	100n	20%	100V	Polyester
2C48	100n	+80% -20%	50V	Ceramic Multi-Layer
2C49	100u	+50% -20%	25V	Electrolytic
2C50	100u	+50% -20%	10V	Electrolytic
2C51	10u	+50% -20%	50V	Electrolytic
2C52	100n	20%	100V	Polyester
2C53	lu	+50% -20%	100V	Electrolytic
2C54	4n7	1%	160V	
2C55	100n	20%	100V	Polystyrene
2C56	100n	20%	100V	Polyester
2C56A	470n	20%	63V	Polyester
2C57	100u	+50% -20%	10V	Polyester
2C58	10n	+80% -20%	25V	Electrolytic
2C59	10n	+80% -20%		Ceramic Disc
2C60	lu	+50% -20%	25V	Ceramic Disc
2C61	100u		100V	Electrolytic
2C62	100d	+50% -20%	10V	Electrolytic
2C62 2C63		+80% -20%	25V	Ceramic Disc
	100n	20%	100V	Polyester
2C64	100n	20%	100V	Polyester
2C65	10n	+80% -20%	25V	Ceramic Disc
2C66	270p	2%	100V	Ceramic Plate
2C67	10n	+80% -20%	25V	Ceramic Disc
2C68	10n	+80% -20%	25V	Ceramic Disc
2C69	10n	+80% -20%	25V	Ceramic Disc
2C70	10n	+80% -20%	25V	Ceramic Disc
2C71	10n	+80% -20%	25V	Ceramic Disc
2C72	100n	20%	100V	Polyester
2C73	100u	+50% -20%	25V	Electrolytic
2C74	lu	+50% -20%	100V	Electrolytic
2C75	10u	+50% -20%	50V	Electrolytic
2C76	lu	+50% -20%	100V	Electrolytic
2C77	10n	+80% -20%	25V	Ceramic Disc
2C78	10n	+80% −20%	25V	Ceramic Disc
2C79	10n	+80% -20%	25V	Ceramic Disc
2C80	100u	+50% -20%	10V	Electrolytic
2C81	100n	20%	100V	Polyester
2C82	100n	20%	100V	Polyester
2C83	100n	20%	100V	Polyester
2C84	100n	20%	100V	Polyester
2C85	100n	20%	100V	Polyester
2C86	220u	+50% -20%	16V	Electrolytic
2C87	1000u	+50% -20%	10V	Electrolytic
2C88	10n	+80% -20%	25V	Ceramic Disc
2C89	220u	+50% -20%	16V	Electrolytic
2C90	100u	+50% -20%	10V	Electrolytic
2C91	100u	+50% -20%	10V	Electrolytic
2C92	100n	20%	100V	Polyester
2C93	10u	+50% -20%	50V	Electrolytic
]				
				1

Capacitors Continued.....

				
Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
2C94	6800u	+50% -20%	40V	Electrolytic Not Allocated
2C95 2C96	100n	20%	100V	Polyester
2C96 2C97	220u	+50% -20%	25V	Electrolytic
2C97 2C98	100n	20%	100V	Polyester
2C98 2C99	220u	+50% -20%	25V	Electrolytic
2C100	100u	+50% -20%	25V	Electrolytic
2C100 2C101	4n7	10%	100V	Ceramic Plate
2C101 2C102	820p	10%	100V	Ceramic Plate
2C102 2C103	22u	+50% -20%	35V	Electrolytic
2C104	100n	20%	100V	Polyester
2C105	100u	+50% -20%	25V	Electrolytic
2C106	1000u	+50% -20%	25V	Electrolytic
2C107	100n	20%	100V	Polyester
2C108	100u	+50% -20%	25V	Electrolytic
2C109	220u	+50% -20%	25V	Electrolytic
2C110	820p	10%	100V	Ceramic Plate
2C111	100n	20%	100V	Polyester
2C112	4n7	10%	100V	Ceramic Plate
2C113	100u	+50% -20%	25V	Electrolytic
2C114	100n	20%	100V	Polyester
2C115	220u	+50% -20%	25V	Electrolytic
2C116	100n	+80% -20%	50V	Ceramic Multi-Layer
2C117	10n	+80% -20%	25V	Ceramic Disc
2C118	10n	+80% -20%	25V	Ceramic Disc
2C119	ln3	1%	160V	Polystyrene
2C120	100n	+80% -20%	50V	Ceramic Multi-Layer Ceramic Multi-Layer
2C121	100n	+80% -20%	50V	
2C122	100n	+80% -20%	50V	Ceramic Multi-Layer Ceramic Disc
2C123	10n	+80% -20%	25V	Ceramic Disc
2C124	10n	+80% -20%	25V	Ceramic Disc Ceramic Multi-Layer
2C125	100n	+80% -20%	50V	Ceramic Disc
2C126	10n	+80% -20%	25V	Polystyrene
2C127	ln3	1%	160V	Ceramic Multi-Layer
2C128	100n	+80% -20%	50V 50V	Electrolytic
2C129	10u	+50% -20%	25V	Electrolytic
2C130	100u	+50% -20%	230	
		1		
1	i .	z		X

Resistors

Circuit Ref.	Value
2R1 2R2 2R3 2R4 2R5 2R6 2R7 2R8 2R9 2R10 2R11 2R12 2R13 2R14 2R15 2R16 2R17 2R18 2R19 2R20 2R21 2R22 2R23 2R24 2R25 2R26 2R27 2R28 2R29 2R30 2R31 2R32 2R24 2R35 2R36 2R37 2R38 2R39 2R30 2R31 2R32 2R33 2R34 2R35 2R36 2R37 2R38 2R39 2R40 2R41 2R42 2R43 2R44 2R45 2R46	1k8 220R 100R 680R 47R 100R 1k5 1k5 680R 100R 22k 10k Not allocated 2k2 4k7 47R 100R 100R 15R 180R 220R 1k5 100R 100k 100k 220k (wire link fitted) 22k 47R 100k 100k 100R 180R 330R 100R 180R 330R 1k5 220R

Circuit Ref.	Value
2R47 2R48 2R49 2R50 2R51 2R52 2R53 2R54 2R55 2R56 2R57 2R58 2R59 2R60 2R61 2R62 2R63 2R64 2R65 2R66 2R67 2R68 2R69 2R70 2R71 2R72 2R73 2R74 2R75 2R78 2R78 2R78 2R78 2R78 2R78 2R78 2R78	100k 100k 100R 1k 10k 10k 10k 3k3 100R 10k 22k 3k3 220R 3k9 22k 10k 100R Not allocated 100R Not allocated Not allocated Not allocated Not allocated 10k Not allocated 470k 10k 10k Not allocated Not allocated 470k 10k 10k Not allocated Not allocated Not allocated Not allocated Not allocated 10k 10k 10k 10k 10k 10k 10k 10k 10k 100k 100k 100k 100k 100k
2R91	560R

All Resistors ±5% 0.33W Standard Film unless otherwise stated.

Resistors Continued....

Circuit Ref.	Value
2R92 2R93 2R94 2R95 2R96 2R97 2R98 2R99 2R100 2R101 2R102	560R 2k2 4k7 47k 330R 100k 18R 100R 1R 220R 100R
2R102 2R103 2R104 2R105 2R106 2R107* 2R108 2R109	100R 1R 100R 18R 2R7 100k 47R

	1.00
Circuit Ref.	Value
2R110 2R111 2R112 2R113 2R114 2R115 2R116 2R117 2R118 2R119 2R120 2R121 2R122 2R123 2R124 2R125 2R126 2R127 2R128	47R 470R 1k2 47R 47R 560R 10k 10k 1k 8k2 Not allocated 47R 10k 100R 820R 10k 22k Not allocated
1	.1

All Resistors ±5% 0.33W Standard Film unless otherwise stated.

Potentiometers

Circuit Ref.	Value	Power Rating	Tolerance.	Туре
2RV1 2RV2	1k 10k	0.5W 0.5W	20% 20%	Horizontal Cermet Preset Horizontal Cermet Preset Not allocated
2RV3 2RV4 2RV5	4k7	0.5W	20%	Horizontal Cermet Preset Not allocated
2RV3 2RV6 2RV7 2RV8	47k 2k2 47k	0.5W 0.5W 0.5W	20% 20% 20%	Horizontal Cermet Preset Horizontal Cermet Preset Horizontal Cermet Preset

Filters

Circuit Ref.	Туре	Manufacturer	Description
2FL1	BP4598-40		AM
2FL2	BP4727-10		LSB for USB reception

 $[\]pm 5\%$ 0.5W Carbon Film

Integrated Circuits

Circuit Ref.	Туре	Manufacturer	Description
2IC1 2IC2 2IC3 2IC4 2IC5 2IC6 2IC7 2IC8 2IC9 2IC10 2IC11 2IC12 2IC13 2IC14 2IC15	MC14016 BCP MC14016 BCP SL623C MC14016 BCP MC7812CT SL1625C CA3240E CA3240E MC14016 BCP SL1621C TBA810S TBA810S MC1350P MC1350P	Motorola Motorola Plessey Motorola Motorola Plessey RCA RCA Motorola Plessey SGS SGS Motorola Motorola	Quad Switch Quad Switch Not allocated AM DET/AGC AMP/SSB Detector Quad Switch Voltage Regulator AM DET/AGC Amplifier FET DUAL Op. Amp FET DUAL Op. Amp Quad Switch AGC Generator Audio Amplifier Audio Amplifier IF Amplifier IF Amplifier

<u>Diodes</u>

Circuit Ref.	Туре	Manufacturer	Description
2D1 2D2 2D3 2D4 2D5 2D6 2D7 2D8 2D9 2D10 2D11 2D12 2D13 2D14 2D15 2D16	BZX79C6V2 BAX13 BZX79C6V2 BAX13 BAX13 BAX13 BAX13 BAX13 BAX13 BAX13 BAX14 BAX14 BAX15 BAX16 BAX16 BAX17 BAX1	Mullard	Zener Silicon H/S Switching Zener Silicon H/S Switching Silicon H/S Switching Not allocated Silicon H/S Switching Silicon H/S Switching Silicon H/S Switching Silicon Restifier Silicon Rectifier

Transistors

Circuit Ref.	Туре	Manufacturer	Description
2TR1	BFR54	Mullard	Silicon RF
2TR2	BFR54	Mullard	Silicon RF
2TR3	BFR54	Mullard	Silicon RF

Main Board Prefix 2 Spares Continued....

Transistors Continued...

Circuit Ref.	Type	Manufacturer	Description
2TR4 2TR5 2TR6 2TR7 2TR8 2TR9 2TR10 2TR11 2TR12	BC547B BC547B BFR54 BFR54 BFR54 BC547B	Mullard Mullard Mullard Mullard Mullard Mullard	Silicon G/P Silicon G/P Silicon RF Silicon RF Silicon RF Silicon G/P Not fitted Silicon G/P Not fitted

Transformer

 Circuit Ref.	Туре	Manufacturer
2T1	(600 ohm) 8641P	Eddystone

Chokes

Circuit Ref.	Value	Type	Manufacturer
2CH1 2CH2 2CH3 2CH4 2CH5 2CH6	100mH 47uH 10uH 10uH	SC60 7350P SC60 9492P SC60 9379P SC60 9379P	Not allocated Not allocated Sigma Sigma Sigma Sigma Sigma

Inductors

Circuit Ref.	Туре	Manufacturer
2L1 2L2	D5466 D5644	Eddystone Eddystone

Miscellaneous

Printed Circuit Board 11137PB

Capacitors

		, , , , , , , , , , , , , , , , , , , ,		- 40
Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
3C1	10n	+80% -20%	25V	Ceramic Disc
3C2	10n	+80% -20%	25V	Ceramic Disc
3C3	10n	+80% -20%	25V	Ceramic Disc
3C4	10n	+80% -20%	25V	Ceramic Disc
3C5	10n	+80% -20%	25V	Ceramic Disc
3C6	220n	20%	100V	Polyester
3C7			1004	Not allocated
3C8	10n	+80% -20%	25V	Ceramic Disc
3C9	10n	+80% -20%	25V 25V	Ceramic Disc
3C10	10n	+80% -20%	25V 25V	Ceramic Disc
3C11	10n	+80% -20%	25V	Ceramic Disc
3C12	10n	+80% -20%	25V 25V	Ceramic Disc
3C13	10n	+80% -20%	25V	Ceramic Disc
3C14	10n	+80% -20%	25V 25V	l .
3C15	10n	+80% -20%	25V 25V	Ceramic Disc
3C16	220n	20%	100V	Ceramic Disc
3C17	10n	+80% -20%		Polyester
3C18	10n	+80% -20%	25V	Ceramic Disc
3C19	10n	+80% -20%	25V	Ceramic Disc
3C20	10n	+80% -20%	25V	Ceramic Disc
3C21	10n	+80% -20%	25V	Ceramic Disc
3C22	10n	+80% -20%	25V	Ceramic Disc
3C23	10n	+80% -20%	25V	Ceramic Disc
3C24	10n	+80% -20%	25V	Ceramic Disc
3C25	100u	l .	25V	Ceramic Disc
3C26	100u	+50% -20%	25V	Electrolytic
3C27	lu	+50% -20%	50V	Electrolytic
3C28	lu	+50% -20%	100V	Electrolytic
3C29	10n	+50% -20%	100V	Electrolytic
3C30	100n	+80% -20%	25V	Ceramic Disc
3C31	100H	20%	100V	Polycarbonate
3C32	100n	+80% -20%	25V	Ceramic Disc
3C33	100n	20%	100V	Polycarbonate
3C34	100n	+80% -20%	25V	Ceramic Disc
3C35	10017 10n	20%	100V	Polycarbonate
3C36	100n	+80% -20%	25V	Ceramic Disc
3C37	100H	20%	100V	Polycarbonate
3C38	100n	+80% -20%	25V	Ceramic Disc
3C39		20%	100V	Polycarbonate
3C40	100n	20%	100V	Polycarbonate
3C40 3C41	10n	+80% -20%	25V	Ceramic Disc
3C41 3C42	100n	20%	100V	Polycarbonate
3C42 3C43	100p	2%	100V	Ceramic Plate
3C43	100n	20%	100V	Polycarbonate
3C44 3C45	100p	2%	100V	Ceramic Plate
	10u	+50% -20%	50V	Electrolytic
3C46	100n	20%	100V	Polycarbonate
3C47	15p	2%	100V	Ceramic Plate
3C48	1n6	1%	160V	· Polystyrene
3C49	8n2	5%	160V	Polystyrene

Capacitors Continued....

Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
3C50 3C51 3C52 3C53 3C54 3C55 3C56 3C57 3C58 3C59	2n 100n 100p 100n 1n6 10u 100n 10u 100n	1% 20% 2% 20% 1% 20% 20% 20% 20% 20% 20%	160V 100V 100V 100V 160V 25V 100V 25V 100V 100V	Polystyrene Polycarbonate Ceramic Plate Polycarbonate Polystyrene Tantalum Polycarbonate Tantalum Polycarbonate Polycarbonate Polycarbonate

Resistors

Circuit Ref.	Value	Tolerance	Power Rating	Туре
3Rla-h 3R2a-h 3R3 3R4 3R5 3R6 3R7 3R8 3R9 3R10 3R11 3R12 3R13 3R14 3R15 3R16 3R17 3R18 3R18 3R19a-h	10k (x8) 10k (x8) 10k (x8) 100k 1k 100k 100k 100k 100k 100k 100k 100k 100k 100k 100k 100k	2% 2%	180mW (Each Resistor) 180mW (Each Resistor) 180mW (Each Resistor)	Resistor Network Resistor Network Not allocated Not allocated Resistor Network
3R20 3R21 3R22 3R23 3R24 3R25 3R26 3R27	390R 10k 1k 22k 100k 22k 100k 82R			

All Resistors $\pm 5\%$ 0.33W Standard Film unless otherwise stated.

Resistors Continued...

Circuit Ref.	Value	Tolerance	Power Rating	Туре
3R28 3R29	100R			Not all and a
3R30	33R			Not allocated
3R31	10k			
3R32	68R			
3R33	18R			
3R34	68R			
3R35	68R			
3R36	18R			
3R37	68R			
3R38	22R			
3R39	470R			
3R40	150R			
3R41	10R			
3R42	100k			
3R43	100k			
3R44	100k		1	
3R45	100k		İ	
3R46	100R		1	
3R47	470k			
3R48	22k	{	İ	
3R49	22R			
3R50	330R			
3R51	100R			
3R52	330R			
3R53	47R			
3R54	Not fitted		ļ	1
3R55	Not fitted			
3R56	lk		1	İ
				ļ

All Resistors $\pm 5\%$ 0.33W Standard Film unless otherwise stated.

Potentiameters

Circuit Ref.	Value	Tolerance	Power Rating	Туре
3RV1 3RV2 3RV3 3RV4 3RV5 3RV6 3RV7 3RV8 3RV9 3RV10 3RV11 3RV12	10k 470k 470k 10k 10k 10k 1k 100k	20% 20% 20% 20% 20% 20% 20%	0.5W 0.5W 0.5W 0.5W 0.5W 0.5W	Horizontal Cermet Preset Horizontal Cermet Preset Horizontal Cermet Preset Horizontal Cermet Preset Not fitted Not fitted Horizontal Cermet Preset Horizontal Cermet Preset Horizontal Cermet Preset Not fitted Not fitted Not fitted Horizontal Cermet Preset

Integrated Circuits

Circuit Ref.	Туре	Manufacturer	Description
3IC1	ZN425E-8	Ferranti	D/A Converter FET Dual OP Amp. FET Dual OP Amp. D/A Converter Strobed Hex Inverter/Buffer Voltage Regulator Voltage Regulator FET OP Amp. Balanced Mixer
3IC2	CA3240E	RCA	
3IC3	CA3240E	RCA	
3IC4	ZN425E-8	Ferranti	
3IC5	MC14502 BCP	Motorola	
3IC6	MC7805 CT	Motorola	
3IC7	MC7815 CT	Motorola	
3IC8	CA3140E	RCA	
3IC9	SL6440C	Plessey	

Diodes

Circuit Ref.	Туре	Manufacturer	Description
3D1 3D2 3D3 3D4 3D5 3D6 3D7 3D8 3D9 3D10 3D11 3D12 3D13 3D14 3D15 3D16 3D17 3D18 3D19 3D20 3D21 3D22 3D23	BAX13 BAX13 BAX13 BAX13 BAX13 BAX13 BAV10 BAV10 BAV10 BAV10 BAV10 BAV10 BAV10 BAV13 BAX13	Mullard Mullard	Silicon H/S Switching Silicon H/S Switching

Transistors

Circuit Ref.	Туре	Manufacturer	Description
3TR1	BC547B	Mullard	Silicon G/P Silicon G/P Silicon G/P Silicon G/P Dual Gate MOS FET
3TR2	BC547B	Mullard	
3TR3	BC547B	Mullard	
3TR4	BC547B	Mullard	
3TR5	40673 or 3SK51	RCA/Hitachi	

Sockets

Description	Number
SKA 3 Way Top Entry Connector	11338P
SKB 3 Way Top Entry Connector	11338P
SKC 3 Way Top Entry Connector	11338P

Transformers

Circuit Ref.	Туре	Manufacturer	
3T1	D5656	Eddystone	
3T2	D5657	Eddystone	

Coils

Circuit Ref.	Туре	Manufacturer
3L1	D5399	Eddystone
3L2	D5652	Eddystone
3L3	D5399	Eddystone

Choke

Circuit Ref.	Value	Manufacturer	Туре
3CH1	100чН	Sigma	SC60 9491P

RF Board Module Prefix 3 Continued....

Relays

Circuit Ref.	Туре	Manufacturer
3RLA 3RLB 3RLC 3RLD 3RLE 3RLF 3RLF	HE321C1200 HE321C1200 HE321C1200 HE321C1200 HE321C1200	Not fitted Hamlin Hamlin Hamlin Hamlin Hamlin Not fitted

Miscellaneous

Printed Circuit Board

11214PA

Spares for CIO Board Module Prefix 5

Capacitors

Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
5C1 5C2 5C3 5C4 5C5 5C6 5C7 5C8 5C9 5C10 5C11 5C12	7-35p 18p 330p 10n 330p 470n 10n	- 2% 2% +80% -20% 2% 20% +80% -20%	- 100V 100V 25V 100V 35V 25V	Not fitted Not fitted Not fitted Not fitted Not fitted Ceramic Trimmer Ceramic Plate Ceramic Plate Ceramic Disc Ceramic Plate Tantalum Ceramic Disc

Resistors

Circuit Ref.	Value	Tolerance	Power Rating	Туре
5R1 5R2 5R3 5R4 5R5 5R6 5R7 5R8 5R9 5R10 5R11	2k7 470R 470k 1k 27k 4k7 7k5 33k	5% 5% 5% 5% 1% 1% 1% 5%	0.33W 0.33W 0.33W 0.33W 0.4W 0.4W 0.4W	Not fitted Not fitted Not fitted Standard Film Standard Film Standard Film Standard Film Metal Film Metal Film Metal Film Standard Film

Potentiometers

Circuit Ref.	Value	Tolerance	Power Rating	Туре
5RV1	47k	20%	0.5W	Horizontal Cermet Preset

Integrated Circuits

Circuit Ref.	Туре	Manufacturer	Description
5IC1	MC1741CP	Motorola	Operational Amplifier

Diodes

Circuit Ref.	Туре	Manufacturer	Description
5D1 5D2 5D3	BAX13 BAX13	Mullard Mullard	Not fitted Silicon H/S Switching Silicon H/S Switching

Transistors

Circuit Ref.	Туре	Manufacturer	Description
5TR1 5TR2 5TR3	BFR54 BD438	Mullard Mullard	Not fitted Silicon RF Silicon NPN Power

Thermistor

Circuit Ref.	Туре	Manufacturer	Description
5TH1	VA1066S	Mullard	Thermistor

Miscellaneous

XTLl 1400kHz Printed Circuit Board 8665P 11208P

Spares for 1st Oscillator Module Prefix 6

Capacitors

Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
6C1 6C2 6C3 6C4 6C5 6C6 6C7 6C8 6C9 6C10 6C11	10n 120p 120p 10n 10n 10n 10n 10n 470n	+80% -20% 2% 2% +80% -20% +80% -20% +80% -20% +80% -20% +50% -20% +50% -20% 20% +50% -20%	25V 100V 100V 25V 25V 25V 25V 25V 25V 35V 100V	Ceramic Disc Plate Ceramic Plate Ceramic Ceramic Disc Ceramic Disc Ceramic Disc Ceramic Disc Ceramic Disc Electrolytic Ceramic Disc Tantalum Electrolytic

Resistors

Circuit Ref.	Value	Tolerance	Power Rating	Туре
6R1 6R2 6R3 6R4 6R5 6R6 6R7 6R8 6R9 6R10 6R11 6R12 6R13 6R14	1M 1M 470k 2k7 1k 47k 2k2 470k 10k 10k 10k 4k7 27k 7k5 4k7 33k	1% 1% 1%	0.4W 0.4W 0.4W	Metal Film Metal Film Metal Film

All Resistors $\pm 5\%$ 0.33W Standard Film unless otherwise stated.

1st Oscillator Module Prefix 6 Continued....

Variable Resistors

Circuit Ref.	Value	Tolerance	Power Rating	Туре
6RV1	47k	20%	0.5W	Horizontal Preset Cermet

Integrated Circuits

Circuit Ref.	Туре	Manufacturer	Description
6IC1	MC7815CT	Motorola	Voltage Regulator
6IC2	MC1741CP1	Motorola	OP Amp.

Diodes

Circuit Ref.	Туре	Manufacturer	Description
6D1	MV209	Motorola	Varicap Diode Silicon H/S Switching Silicon H/S Switching Silicon H/S Switching Silicon H/S Switching
6D2	BAX13	Mullard	
6D3	BAX13	Mullard	
6D4	BAX13	Mullard	
6D5	BAX13	Mullard	

Transistors

Circuit Ref.	Туре	Manufacturer	Description
6TR1	BFR54	Mullard	Silicon RF
6TR2	BC547B	Mullard	Silicon Op Amp.
6TR3	BFR54	Mullard	Silicon RF
6TR4	BD438	Mullard	Silicon Power

Miscellaneous

TH1 VAl066S Thermistor Mullard

Printed Circuit Board Oscillator and Oven Control

11204P

Spares-for RF Tuner Module Prefix 4

Capacitors

Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре .
4C1	33p	2p	160V	Polystyrene Film Dielectric Trimmer Polystyrene Film Dielectric Trimmer Ceramic Disc Polycarbonate Ceramic Disc Plate Ceramic Film Dielectric Trimmer
4C2	8-135p	-	250V	
4C3	33p	2p	160V	
4C4	8-135p	-	250V	
4C5	10n	+80% -20%	25V	
4C6	100n	20%	100V	
4C7	10n	+80% -20%	25V	
4C8	33p	2%	100V	
4C9	8-135p	-	250V	

Resistors

Circuit Ref.	Value	Tolerance	Power Rating	Type
4R1	lk	5%	0.33W	Carbon Film
4R2	470R	5%	0.33W	Carbon Film
4R3	220R	5%	0.33W	Carbon Film

Variable Resistors

Circuit Ref.	Value	Tolerance	Power Rating	Туре
4RV1	220R	20%	0.5W	Cermet Preset (Vertical)

Chokes

Circuit Ref.	Value	. Туре	Manufacturer	Part Number
4CH1	22uH	SC60	SIGMA	1276OP

Spares for RF Tuner Module Prefix 4 Continued...

Transistors

Circuit Ref.	Туре	Manufacturer	Description
4TR1	BFW30	Mullard	RF Amp.

Inductors

Circuit Ref.	Туре	Part Number
4L1/2 4L1/2 4L1/2 4L1/2 4L1/2 4L3 4L3 4L3 4L3 4L3	Range 1 RF Range 2 RF Range 3 RF Range 4 RF Range 5 RF Range 1 Mixer Range 2 Mixer Range 3 Mixer Range 4 Mixer Range 5 Mixer	D5681 D5683 D5685 D5687 D5689 D5682 D5684 D5686 D5688

Miscellaneous

Printed Circuit Board 11215PA

Audio Attenuator/Relay Module Prefix 22

Capacitors

Circuit Ref.	Value	Tolerance	Voltage Wkg.	Туре
22C1 22C2 22C3 22C4 22C5 22C6 22C7 22C8 22C9	lu 100u lu 100u 100u 47u 100n 100u 10n	+50% -20% +50% -20% +50% -20% +50% -20% +50% -20% +50% -20% +80% -20% +80% -20%	100V 25V 100V 25V 10V 25V 50V 10V 25V	Electrolytic Electrolytic Electrolytic Electrolytic Electrolytic Electrolytic Multi-Layer Ceramic Electrolytic Disc Ceramic

Resistors

Circuit Ref.	Value
22R1 22R2 22R3 22R4 22R5 22R6 22R7 22R8 22R9 22R10 22R11 22R12	2k2 22R 10k 100R 820R 330R 10k 22k 100k 39k 100k
	· •

All Resistors $\pm 5\%$ 0.4W Standard Film unless otherwise specified.

Transistors

Circuit Ref.	Туре	. Manufacturer	Description
22TR1	BD437	Mullard	NPN GP Amp
22TR2	BC547B	Mullard	NPN GP Amp
22TR3	40673	RCA	Dual Gate Mosfet

Diodes

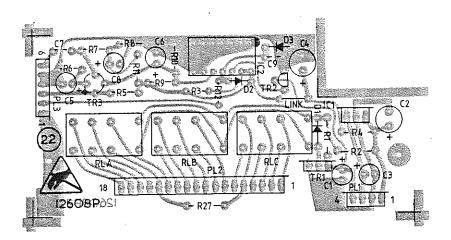
Circuit Ref.	Type	Manufacturer	Description
22D1	BAX13	Mullard	H/S Switching
22D2	BAX13	Mullard	H/S Switching
22D3	BAX13	Mullard	H/S Switching

Integated Circuits

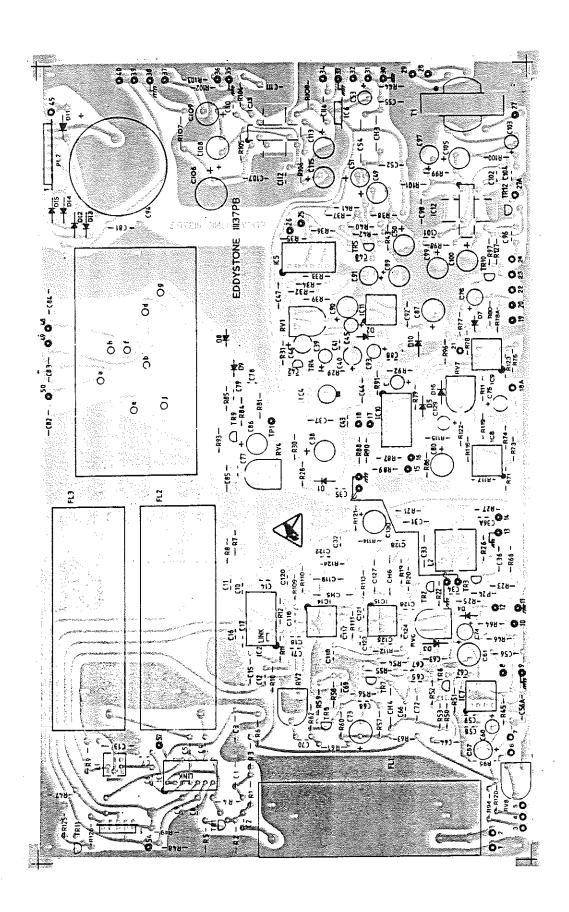
Circuit Ref.	Туре	Manufacturer	Description
22IC1	MC7815CT	Motorola	Voltage Regulator
22IC2	MC14016BCP	Motorola	Quad Analogue Gate

Miscellaneous

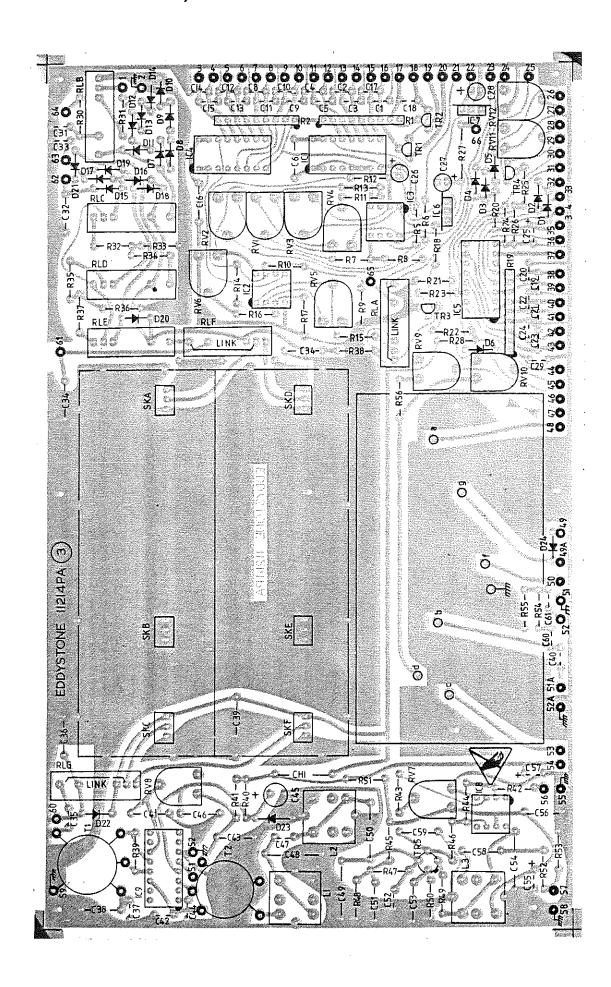
PL1	4 way connector plug	12306P
PL2	6 way connector plug	12307P
PL3	18 way connector plug	12658P
RLA	Relay	12659P
RLB	Relay	12659P
RLC	Relay	12659P
Printed Circuit Board		12608P

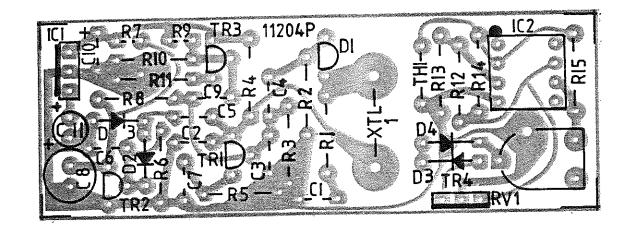

Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Number of the equipment in all communications.

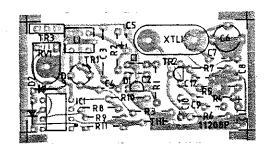
EDDYSTONE RADIO LIMITED, SALES AND SERVICE DEPARIMENT, ALVECHURCH ROAD, BIRMINGHAM B31 3PP, ENGLAND. TELEPHONE: TELEX: CABLES:


FAX:

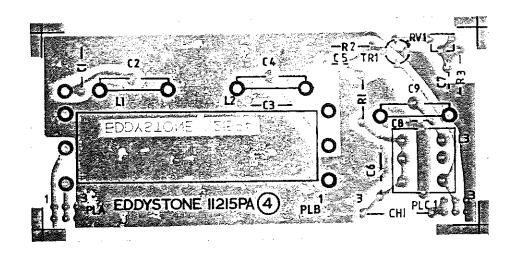
021-475-2231 337081 EDDYSTONE BIRMINGHAM 021-477-5224


4.5
(**
•
4.5
\$ °
1.1
4.2
:
:
:
:
:
:





0.9
ę m
z s
4
٠
:
:
:
. !
1


1st Oscillator Board 11204P Reference 6

CIO Board 11208P Reference 5

RF Tuner Board 11215PA Reference 4

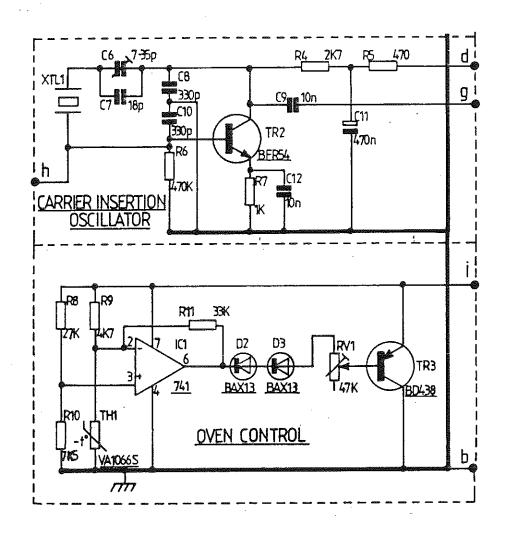
APPENDIX A

Component Handling

<u>Lead bending.</u> Component leads need in general, to be bent to enable the device to be fitted. The bend should be made so that the radius of the bend is not less than the diameter of the lead (or the thickness of the lead in the case of flat leads), and the lead should be supported between the body of the component and the bend. The bend should be at least 2mm (approximately 1/16") from the component.

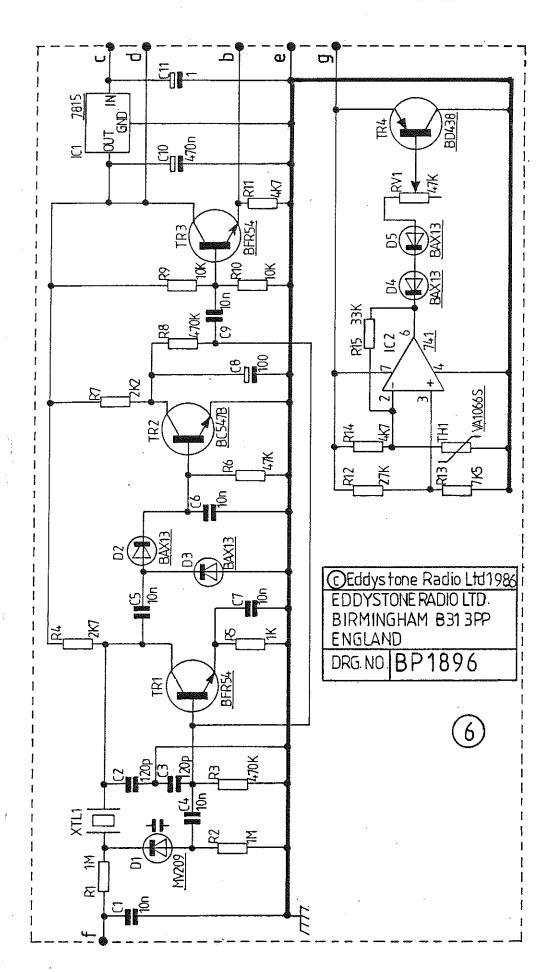
Soldering. A soldering iron having a bit temperature not exceeding 245°C may be used. The soldered joint should be completed within five seconds. Overheating may damage the component.

Heat Sinks. Certain devices which are required to dissipate power are fitted with heat sinks. When replacing these devices, the heat sinking arrangement should be carefully re-produced, e.g. thermal conducting compound may be used. If an insulating washer has been used, this should be replaced and thermal conducting compound applied to both sides.

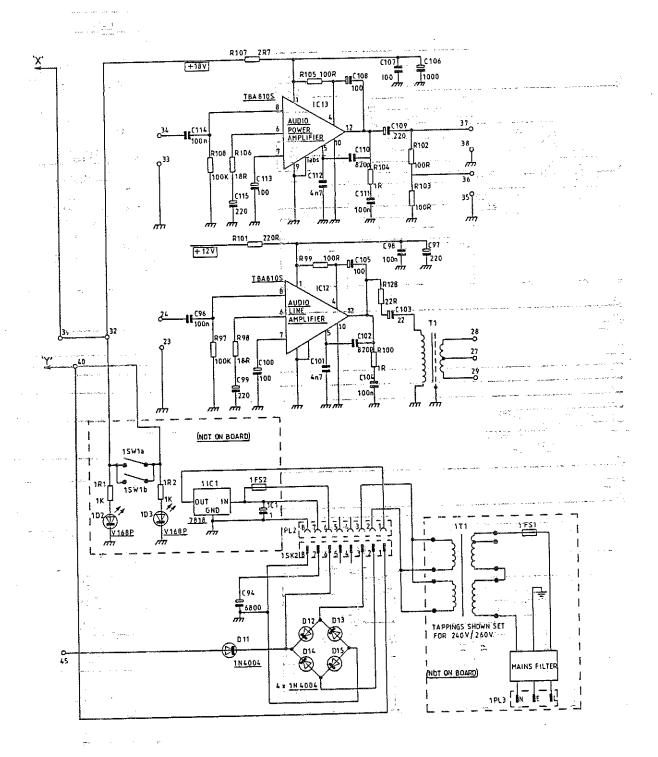

MOS Devices. These have an exceptionally high input resistance and they are susceptiable to damage when exposed to high static electrical charges. To avoid possible damage the following procedures should be followed:

- Devices should be stored and transported in contact with a conductive material.
- 2. Soldering iron, bench surface, tools etc., should all be earthed. The operator should be earthed using a lM ohm series resistor.
- 3. The equipment should be swiched off when devices or boards are inserted or removed.
- 4. Nylon clothing should not be worn.

Anti-static precautions take on added importance in dry weather (relative humidity less than 30%).

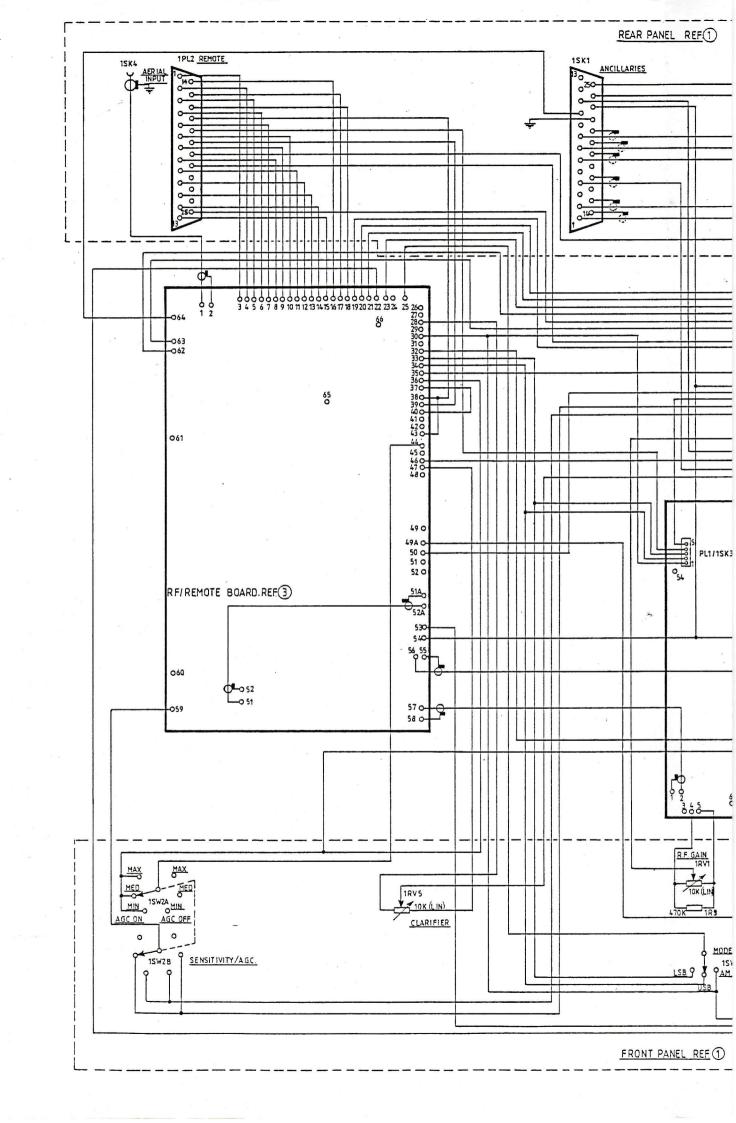


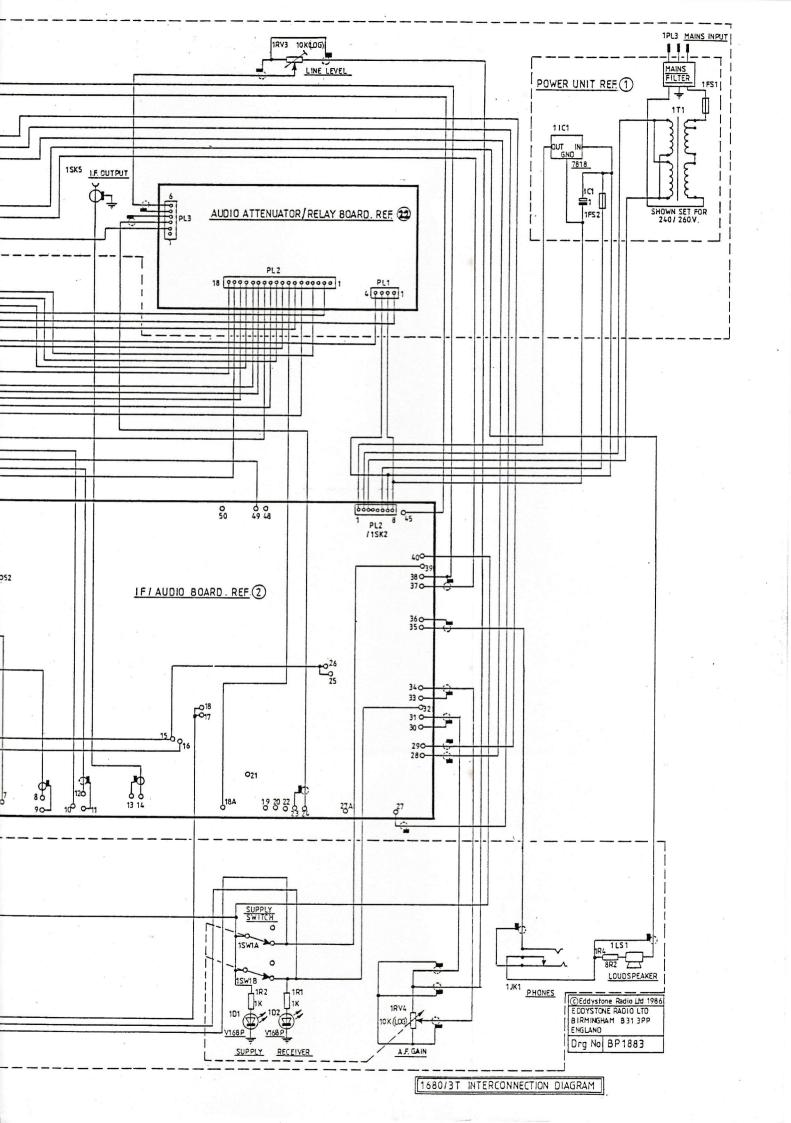
CIO MODULE REF.5.

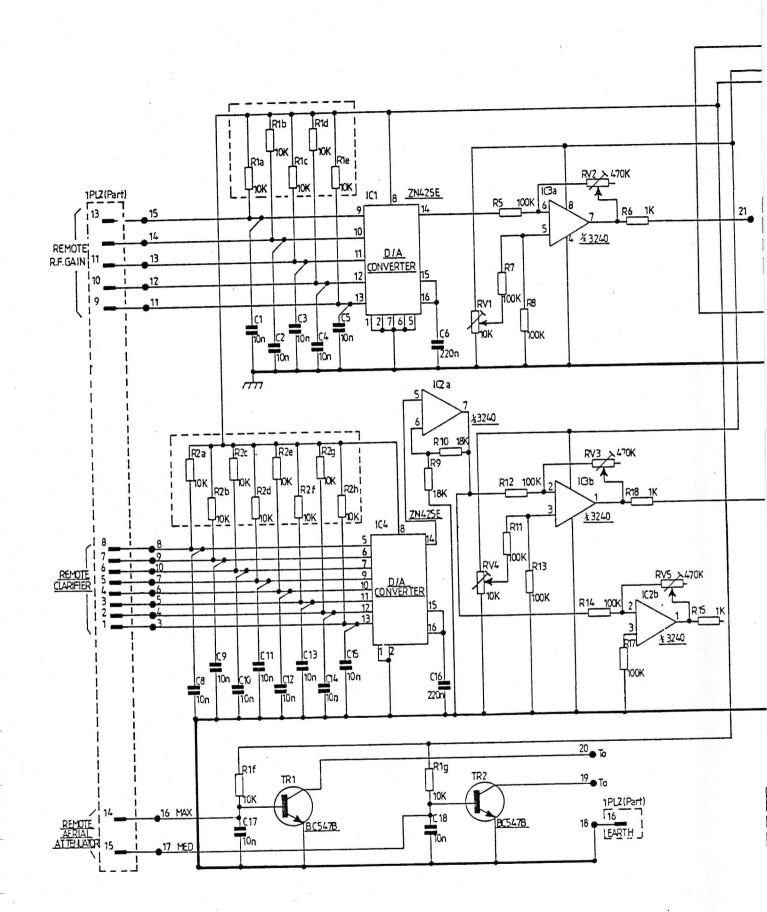


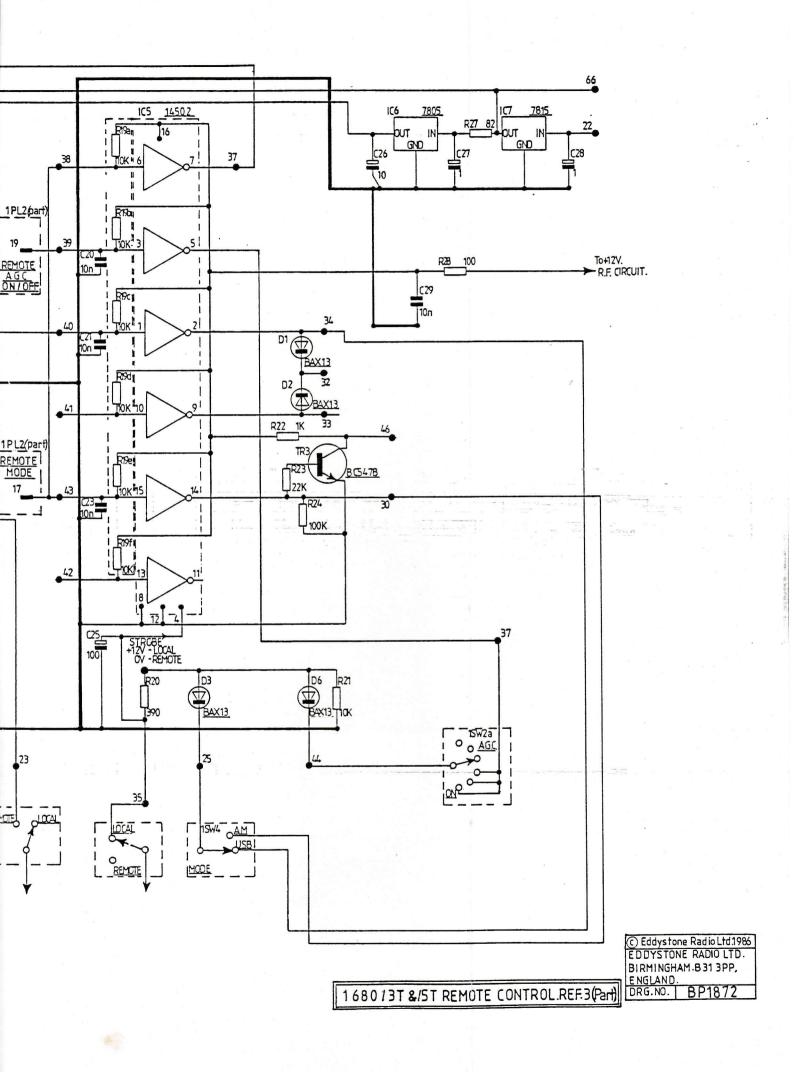
© Eddystone Radio Ltd.1986 EDDYSTONE RADIO LTD. BIRMINGHAM .B31 3PP ENGLAND DRG. NO BP1895

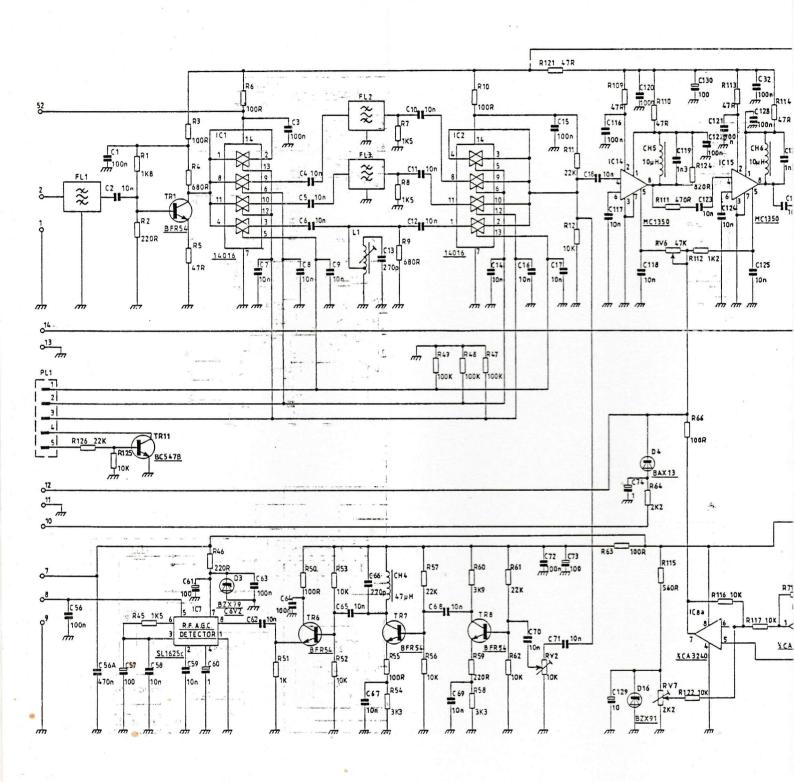
1.3
4.5
1 *
•
1.1
4 1
('
ş ·
8 - 4
. :

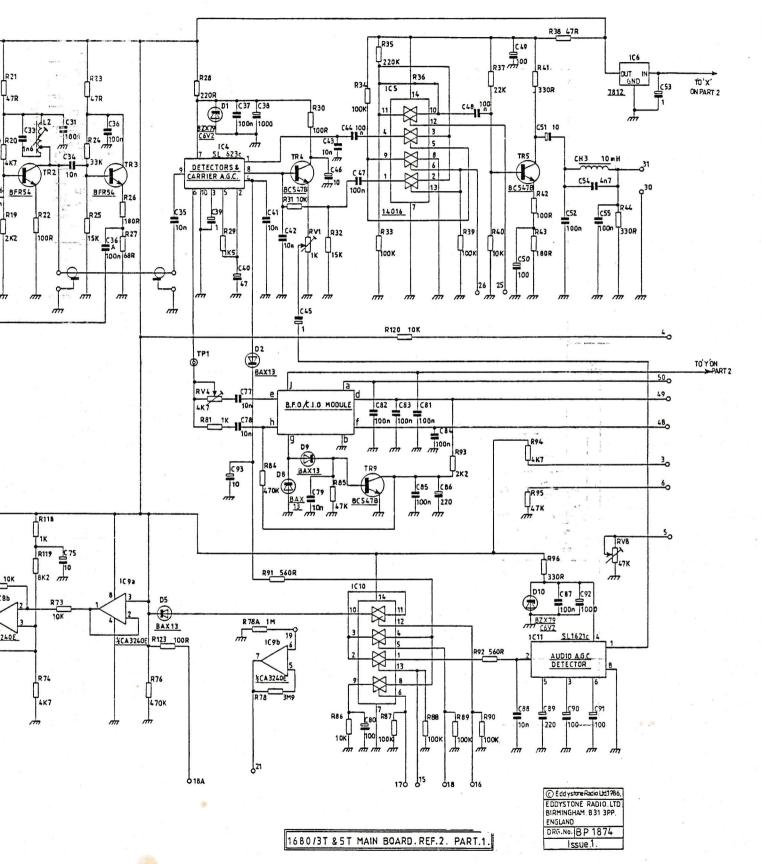


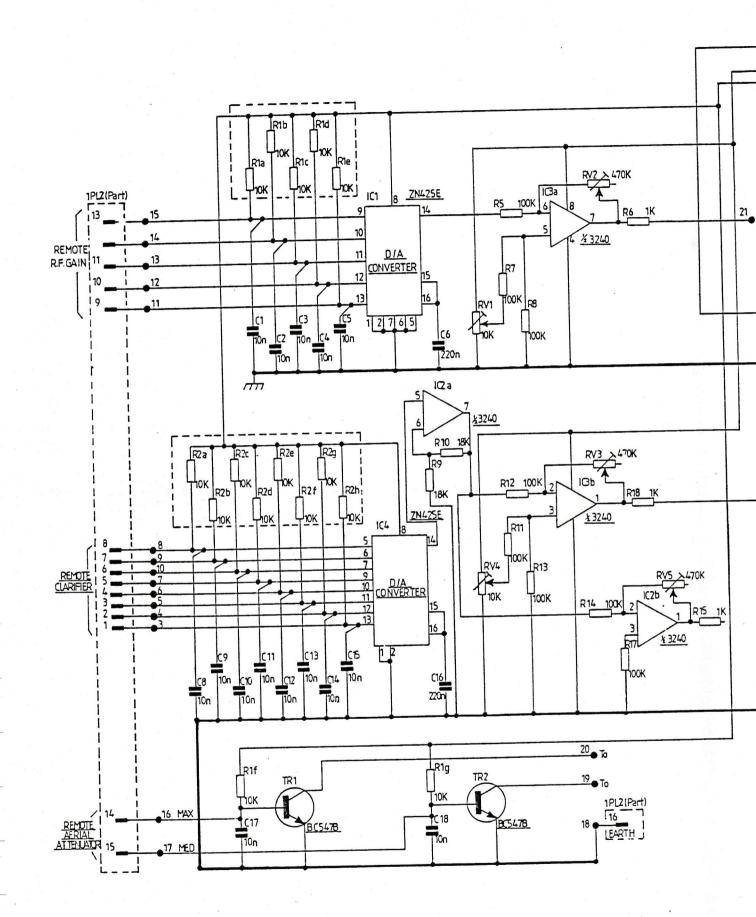


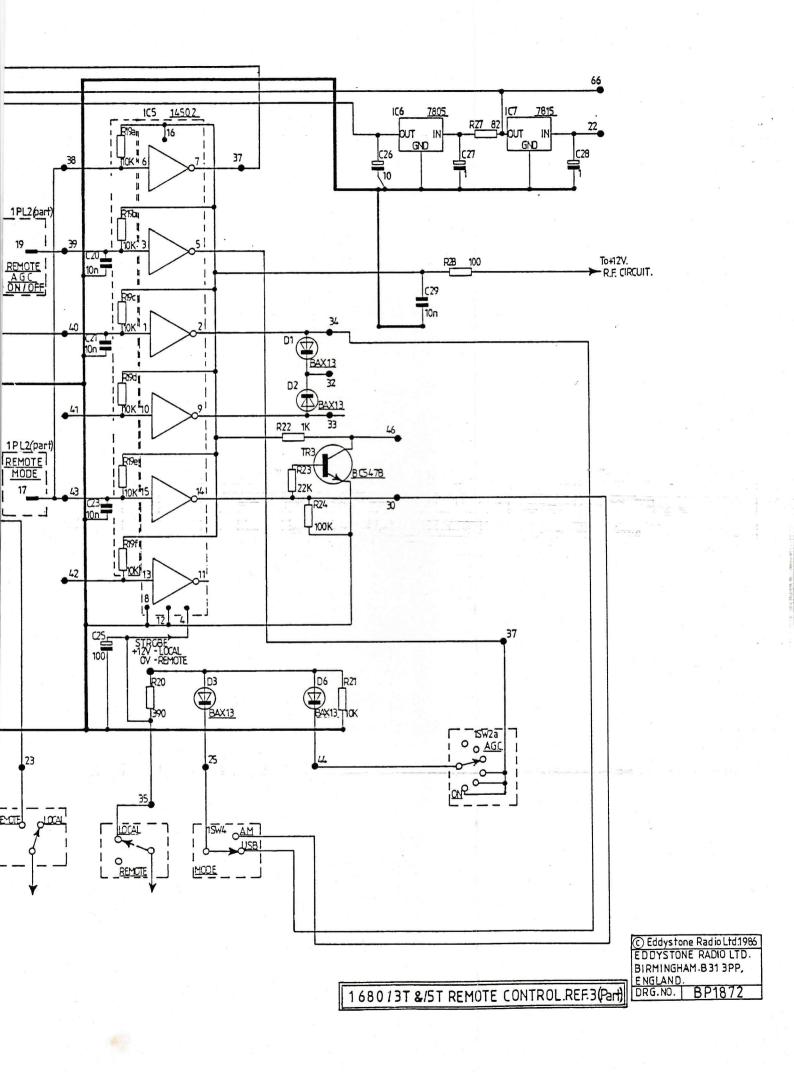

© Eddystone Radio Ltd 1986
EDDYSTONE RADIO LTD
BIRMINGHAM B31 3PP
ENGLAND
DRG.No. BP 1874

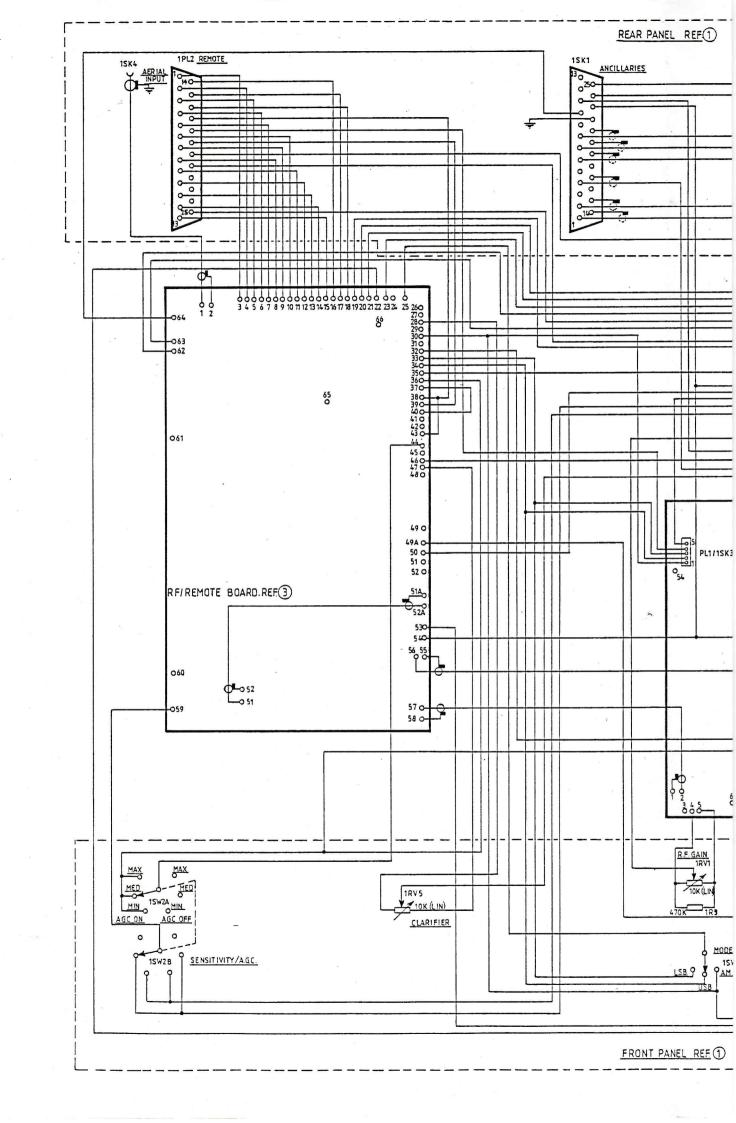

1680/3T &ST MAIN BOARD REF.2 (PART.2)

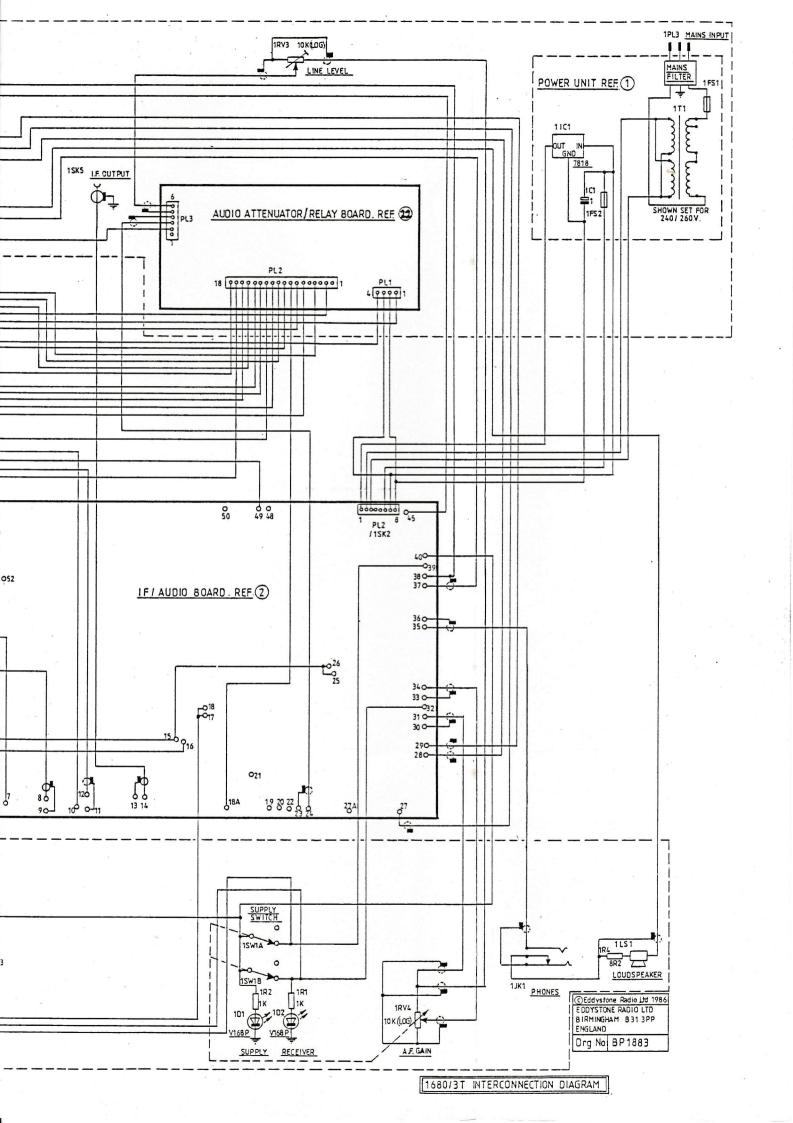


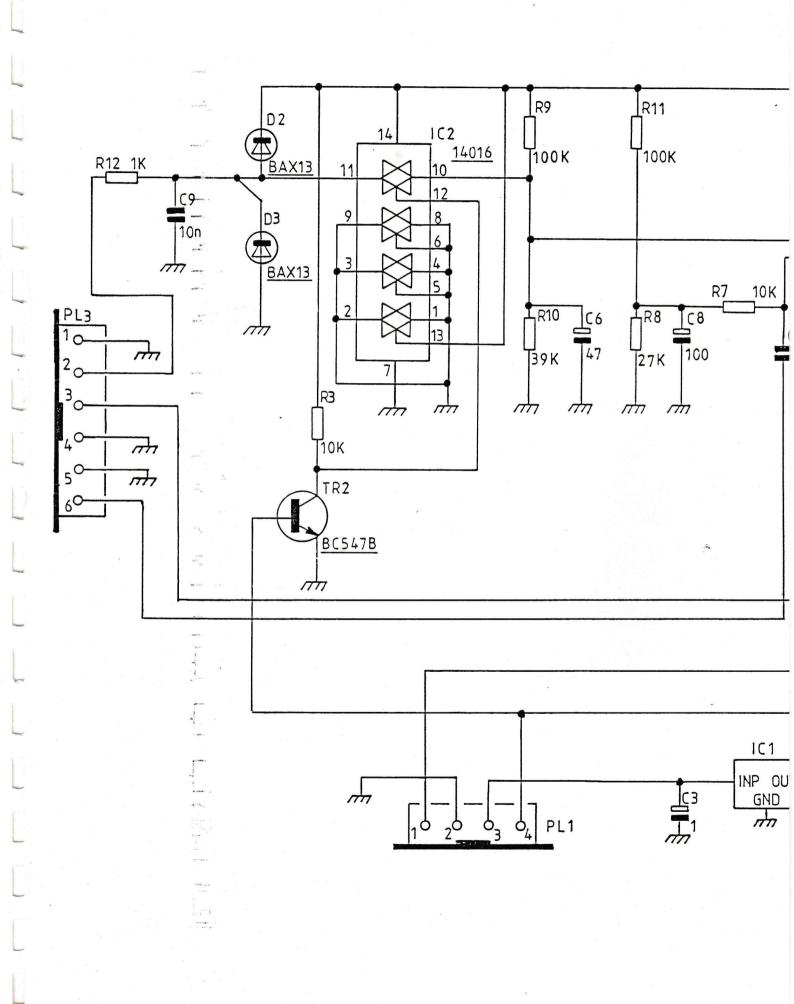


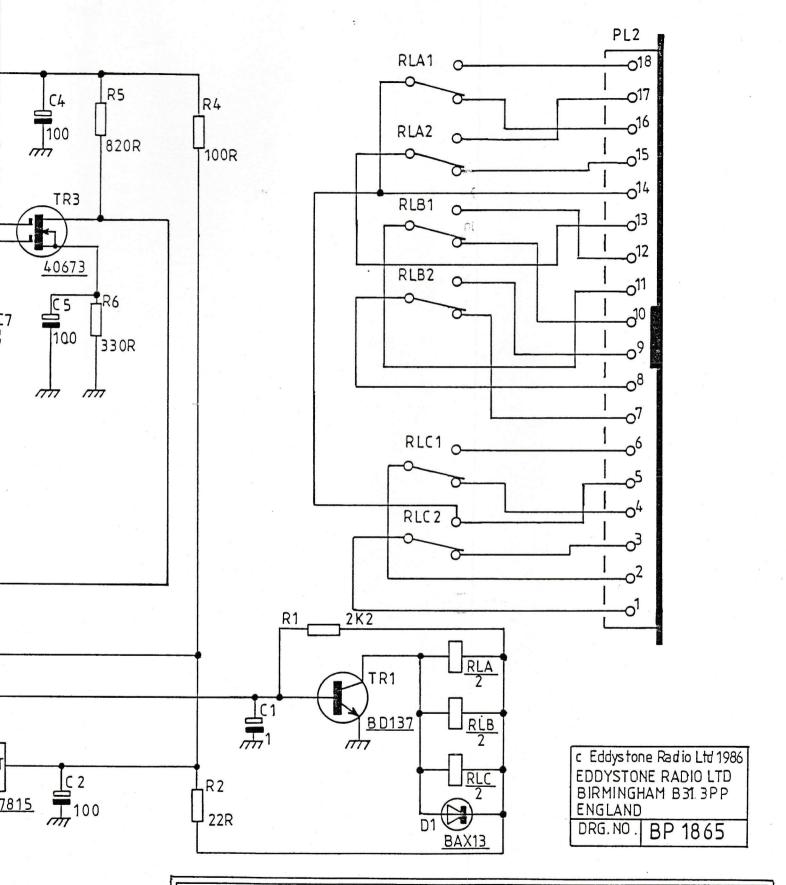

A COLUMN TO THE PARTY OF THE PA

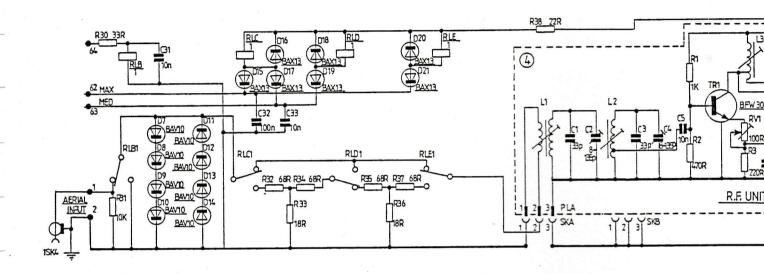


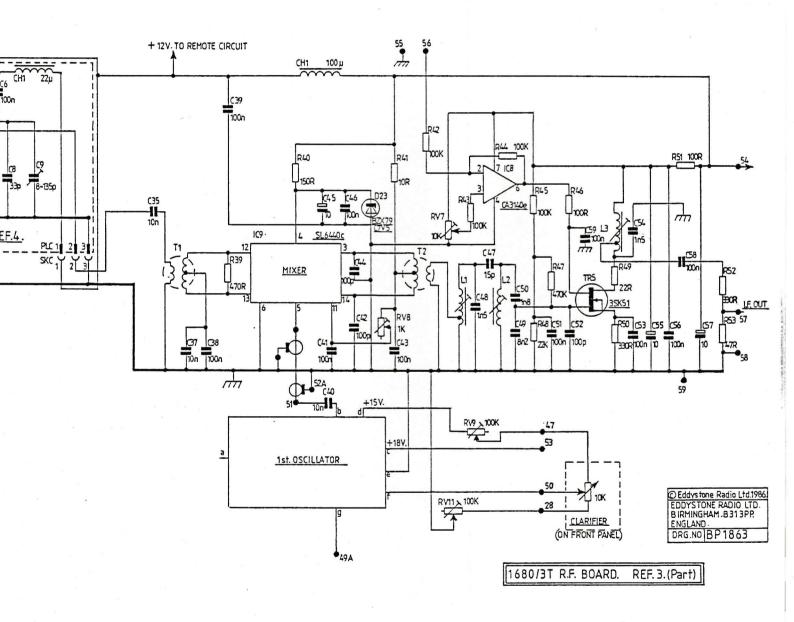



-


-







1680/3T &1680/5T AUDIO ATTENUATOR/RELAY BOARD REF.22

