

by Gerry O'Hara, G8GUH

'TECHNICAL SHORTS' is a series of (fairly) short articles prepared for the Eddystone User Group (EUG) website, each focussing on a technical issue of relevance in repairing, restoring or using Eddystone valve radios. However, much of the content is also applicable to non-Eddystone valve receivers. The articles are the author's personal opinion, based on his experience and are meant to be of interest or help to the novice or hobbyist – they are not meant to be a definitive or exhaustive treatise on the topic under discussion.... References are provided for those wishing to explore the subjects discussed in more depth. The author encourages feedback and discussion on any topic covered through the EUG forum.

AC/DC Set Lore

Introduction

Why on earth would a company with Eddystone's philosophy on manufacturing premium-quality sets produce several lines of AC/DC sets for over two decades? - this type of set usually being considered to be the bottom rung of the radio quality ladder. This is a good a

rung of the radio quality ladder. This is a good question – and one asked by many (check out comments on the Gerard's Radio Corner website <u>http://www.cs.uu.nl/~gerard/RadioCorner/Sets/Eddy670.htm</u>). Well, the answer lies in Eddystone spotting an opening in the market that was theirs to fill back in the late forties

American midgets. These had no hash filter nor did they have short-waves or arrangements for a low-interference aerial. There would be a market for a decent general coverage receiver, he said, and there was." The first set of this type bearing the Eddystone S.670 in 1948 sporting 7 miniature B8A valves and a selenium

rectifier. This model had a 'half moon' dial (photo, right), as fitted to the S.740, and was superseded by the S.670A with a 'slide rule' dial in 1954 and then by the S.670C in the 'MkII style' case in 1962 through 1964, all with basically the same circuit. Again to quote the QRG "The whole 670-series was eminent over a twenty-year period and was probably the most

successful 'universal' AC/DC 110-250v general coverage broadcast receiver", but goes on to say "It is, however probably responsible for getting the marque a poor name among those who believed these were the only sets the company built!" but then tempered by noting "But they were just as well constructed as the professional models costing three or four times the price and looking very similar." More models were

added as the years progressed, including the S.840 series 'economy communications receiver' – its specification reportedly being suggested by Stratton's agent in the British Dependency of Aden on the Persian Gulf as an 'upgrade' to the S.670 series cabin sets (QRG), this time aimed at the short wave listener. The S.840 series was a successful set that ran for some 15 years from

1953 (the S.840 with 'half moon' dial), through the S.840A in 1954 ('slide rule' dial) and the S.840C in 1962 through 1968 in the MkII style case (photo, above right). Again, almost the same circuit was used in each of these models. A special version was also

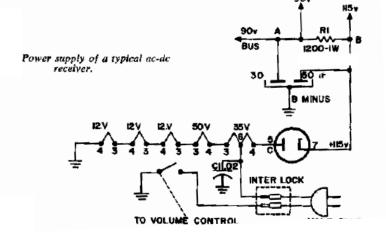
manufactured for the Swedish Merchant Marine, the S.909 series, and also several models were re-badged as MIMCO (Marconi Marine), eg. Model 3873A. Yet another variation was the 'miniature' S.870 AC/DC model series, introduced in 1956, marketed for ocean liner passenger cabins and, apparently, a 'cult' domestic market (QRG) and were manufactured until 1966 (S.870A, photo, left) – these were really 'cute' little receivers and were actually smaller than the first

'miniature' transistorized sets of the 1960's (EC10, EB35 etc).

Well, so much for a potted history of the Eddystone AC/DC line, but what made this type of set 'tick' and how come they were able to work on AC or DC over a wide range of voltages and yet were cheaper to produce than AC only sets?

The Condensed History of the AC/DC Set Design

The power supply circuit (or lack of it) is really the 'heart' or 'secret' of the AC/DC set: most of the remaining circuit elements are the same, or very similar, to those found in standard AC-only sets. The other main difference, especially in metal-cased AC/DC sets

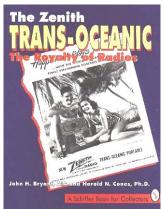

produced in the UK, such as the Eddystone ranges, were that the chassis was electrically isolated from the metal outer case for safety reasons: unlike my US-made National Model NC-46 (photo, right), dating from the mid-1940's, which was built without this 'luxury' as that set was intended specifically for the US market with the 110v mains supply having the 'neutral' line grounded and connected directly to the metal chassis/case.

The drivers for the development of AC/DC set were:

- Cost: the mains transformer was probably the most expensive single component in a radio set;
- Weight: the quest for portability (around the house or between houses) meant that the weight of the mains transformer was undesirable two to four pounds of 'excess baggage';
- Size: the mains transformer is a bulky item; and
- Availability (or not) of AC mains: many US cities had DC power supplies. Also, many ships had
 DC supplies.

So, to resolve all the above in a single stroke, why not dispense with the mains transformer? – this would allow the 110v (or 240v) mains to be applied to a half-wave rectifier that would provide a suitable DC output for the HT supply with either AC or DC

applied to the set, albeit rather on the low voltage side (eg. about 90v or so for a 110v AC supply) compared with 250v to 300v or so for a typical AC-only HT supply. Not too much of a problem, providing valves with suitable characteristics were used and bias supplies designed accordingly. Ok, so the HT is taken care of, but what about the valve heater supplies? – well, why not string 'em together in series (or series-parallel) just like a set of Christmas tree lights? In theory this works, but in practice it not too easy with the low-voltage heaters as used in many pre-WWII valves (eg. 2v or 6v), unless you wanted to use 18 or more (!), or connect a large-wattage wirewound resistor, an iron-wire 'ballast' resistor or even a resistance wire in the power cord, to dissipate the excess volts (and heat). To mitigate this complexity and inconvenience, higher-voltage heater valves were developed in the mid-1930's, including the 12v types such as the 12AS7 pentagrid mixer, 12SK7 pentode RF/IF amplifier, 12SQ7 detector/AGC/1st audio, along with higher voltage still output and rectifier filament types (eg. 50v and 35v) such as the 50L6 output pentode and 35Z5 rectifier (12v+12v+35v+50v = 121v), often with the dial lamp included (4v or so) to give a 125v drop across the entire heater string at the desired filament current, ie. generally ok for operation at 110v to 120v. The higher voltage heaters were assigned to the output stage and rectifier valves as, with the current through the heater string being the same through each heater (ranging from 50mA to 300mA, depending on the valve types used), unless shunt resistors were used, more energy was needed in these two 'power-hungry' valves compared with the small-signal stages: this was the typical 'All-American-Five' valve (er, 'tube') line-up. Where valves with different heater current requirements had to be utilized, manufacturers paralleled some


valve heaters and/or shunted them with resistors (eg. the DM70 tuning indicator in the Eddystone S.840C). Later, in the quest to reduce power consumption further for battery operation, a series of nominal 1v (eg. 1R5) and 3v (eg. 3Q5) heater valves were produced and used in portable or 'universal' AC/DC/Battery sets such as the famous Zenith

'Transoceanic' series in the US (these extremely popular sets have many variations and

even have their own dedicated web sites, eg. <u>http://www.transoceanic.nostalgiaair.org/</u> or sections of websites, eg.

http://www.antiqueradio.org/transoceanics.htm). The circuits of these Zenith sets changed somewhat over the years, but the earlier models used a 117v heater rectifier valve, separate from the main valve heater chain, that was disconnected from the circuit when on battery power, leaving only the string of low voltage valve heaters to be powered from a low voltage battery and the HT supply from a 67.5v battery. This series started with the 'Clipper' (Model 7G605) in 1942 and

lasted into the 1960's (I have an early-model

Zenith universal set from 1941 - a 5G500 - that was the forerunner of the Transoceanic sets: it is broadcast band (MW) only, but uses a similar valve line-up, power supply and case style (see photo, above, with its chassis out of the case) – it actually works very well. More sophisticated sets utilized a negative temperature coefficient thermistor to reduce the current surge through the heater chain at switch-on and/or provide some degree of voltage stabilization; others relied on the dial lamp to provide surge protection.

Typical AC/DC Set Stages

As alluded to above, the 'epitome' of AC/DC receiver design was the ubiquitous 'All-American-Five' sets manufactured from the late thirties through the sixties: these were 'cheap and cheerful' sets that all used almost the same basic circuit no matter which manufacturer made them, comprising a mixer-oscillator, a single IF amplifier stage, combined detector/AGC/first audio stage, an output stage and half-wave rectifier (five valves, hence the generic name). The circuit shown on the 'Detect-o-Scope' poster (see photo, below) is a typical design of such a receiver: a total of only around 40 electronic components!

This type of set essentially comprised:

- A mixer/oscillator: typically a pentagrid (eg. 12SA7) fed by a loop aerial as part of the input (and the only) RF tuned circuit. The anode of this stage being fed into the primary of the first IF transformer, the secondary of which formed the grid circuit of;
- A single IF stage, usually operating at around 465kHz, the anode of this stage was fed into the primary of the second IF transformer, the secondary of which fed the;
- Diode detector within a combined detector/AGC/1st audio stage, typically a duodiode-triode, the detector diode feeding;
- A 1st audio stage via the volume control, the anode of which was capacitorcoupled to the;
- Output stage, usually a pentode, the anode feeding into the primary of the output transformer, all this being fed power from;
- A half-wave rectifier with capacitor/resistor filter.

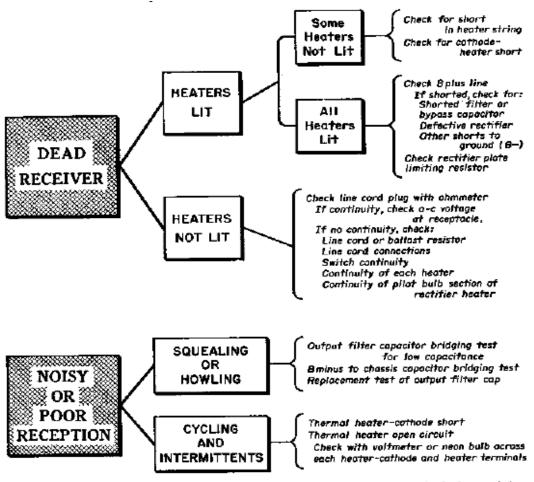
AGC was developed from the detected signal and usually applied to the mixer and IF stages. In order to provide the maximum possible flexibility of input voltage options, some manufacturers, eg. Eddystone, included a switch and a multiple-tap high-wattage mains dropper/ballast resistor to allow 200v or 240v to be applied to the set.

More sophisticated AC/DC sets were manufactured: some of the Eddystone models noted in the introduction to this article came in this category, with the 8-valve S.840 series being the most complex in the line-up, sporting an RF stage, triode-hexode mixer/oscillator, BFO and a tuning indicator. The S.670A and S.840 series RF, IF and

My National NC-46: an AC/DC 'boatanchor' communications receiver (sort of)

AF circuits were almost identical to those in the AConly S.740 model, except for the BFO design (not present in the S.670A) and the inclusion (or not) of a 'magic-eye' tuning indicator. The 10-valve National Model NC-46 I own (photo, left) was probably about as sophisticated as this form of set became, with features such as bandspread tuning, two IF amplifier stages with manual gain control, a BFO, amplified AGC, noise limiter, tone control, and, incredibly, a push-pull output stage.

Fault-Finding and Repairing AC/DC Sets

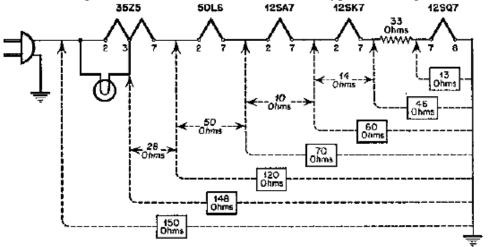

The most important thing to consider when working on AC/DC sets is that when they are operating, their circuits are connected directly across the mains supply and this practice has an inherently higher electrical shock hazard associated with it than in a 'conventional' transformer-isolated supply – particularly when the set's case is removed and the metal chassis is exposed. The use of an isolation transformer is therefore recommended during servicing operations – both as an increased safety measure and to avoid grounding problems when mains-powered test equipment is being connected to the set (eg. VTVM, signal genny etc). Also, it should be remembered that the biasing circuits in some of these sets result in the chassis floating several volts negative of electrical ground – although this is not a safety concern, this can be confusing when measuring circuit voltages or when replacing polarized (electrolytic) capacitors: study the circuit diagram very carefully before starting (I have 'popped' at least one electrolytic in the past by not taking account of this). Also, in many US sets, the on-off switch is usually in the supply 'neutral' to chassis connection.

General receiver RF, IF and AF stage fault-finding and alignment procedures for AC/DC sets are virtually identical to those for AC-only sets. As such procedures are dealt with in other 'Tech Short' articles, they will not be repeated here, although reference may be made to the 'Detect-o-Scope' poster and 'Procedures' tables attached to this article. So what are the main differences in servicing AC/DC sets compared with AC-only ones? – the power supply of course, though to be honest, there is not that much to go wrong, this being either:

• An open-circuit valve heater: with the heaters being in series, if one fails (breaks), all the valves stop working as no heater current flows – just like an old-fashioned

Christmas tree light circuit (except here there are only five or so valves and a dial lamp to check, not umpteen fiddly little bulbs when you are half-cut on Christmas 'cheer'). Heater failure tends to be a much more prevalent valve failure mode in AC/DC sets than in sets with a transformer, this likely attributable to:

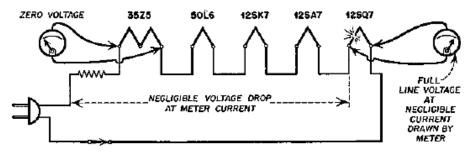
- Switch-on current surge;
- Out of tolerance voltage across individual valve heaters due to current draw imbalance of other valve heaters and dropper resistors due to valve and other component ageing;
- More susceptibility to voltage spikes/surges in the mains supply
- A shorted or open-circuit filter capacitor(s) or metal/selenium rectifier;
- Burnt-out or out-of-tolerance dropper resistor, ballast resistor or thermistor; or
- A 'physical' problem, eg. a blown fuse, broken or faulty power cord, faulty on-off switch, dry joint, faulty valve socket, shorted or loose connections etc.



Servicing chart showing appropriate service checks particularly applying to a-c/d-c receivers, arranged according to the symptoms of the troubles involved.

The techniques for identifying the problem in the power supply circuit are fairly straightforward and logical, see summary diagram, above.

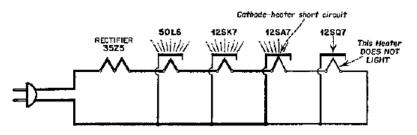
Here is my simplified procedure:


- A power supply fault is evidenced by one or more of the following:
 - The set produces no noise when switched on (after allowing time for the valves to heat up);
 - The valve heaters do not light up, the dial light does not glow and the valves do not get warm;
 - Some valve heaters glow (too) brightly and others are unlit;
 - No HT voltage can be measured on the smoothing capacitors;
 - The set 'motorboats' (produced 'put-put' sounds) or 'squeals', or
 - Produces a loud hum, either continuously or when a station is tuned in.
- If the set appears 'dead', first undertake some simple continuity and resistance checks with the set disconnected from the mains power:
 - Connect the ohmmeter (x1000 range) between the rectifier cathode and a common negative point (note: this may not be the chassis check the circuit diagram) the meter needle should first swing across to a low resistance and then rise to a reading of ~100kohm (or more) showing that the HT circuits and the power supply filter capacitors are probably ok. If a lower resistance reading is evident, then suspect a shorted filter or HT bypass capacitor this must be corrected before proceeding with further checks, or replacing another component identified subsequently, eg. a rectifier, as failing to do so may result in the newly installed component(s) suffering the same fate as the original... an expensive and frustrating way of discovering the 'real' fault;
 - Connect an ohmmeter across the mains plug with the set switched off the ohmmeter should read open circuit. Switch the set on the resistance of the heater string and other resistive components in the set should now be measured by the ohmmeter (the resistance may change in value if the test meter leads are swapped over if a solid state rectifier is present) a reading of 100 ohms to 200 ohms would be typical (see figure, below). A

Heater circuit of a typical popular a-c/d-e receiver design, showing the resistance values which would represent normal ohinmeter readings when the heaters are cold. By observations of these resistance values, and comparison with readings actually obtained, troubles in the heater circuit can be quickly located.

resistance of thousands of ohms to open circuit would indicate that a fault is present in the supply (in this case, first check any fuses, if fitted, the continuity of the power cord to the set and then the heater chain). A short would indicate a physical problem – eg. frayed insulation or shorted component leads. With the ohmmeter still connected, remove a valve and see if the measured resistance changes – if it does by a significant amount, then the chain of valve heaters is probably ok, and likewise, if it does not, there is likely a valve with an open circuit heater present (be cautious here though as this is not a definitive test: the presence of thermistors or internal valve electrode short may influence the response).

- If a defective valve heater is suspect, check for this further by (assuming an AC supply);
 - <u>With the power applied</u> and all valves installed, carefully connect an AC voltmeter across each valve heater in turn, taking care not to short

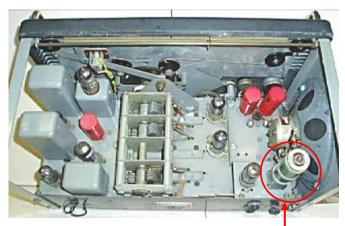


When the heater of a tube in a series a-c/d-c heater circuit opens up, the full line voltage appears across it, as shown here.

anything out in the process: if there is an open circuit heater, the voltmeter will read a voltage when placed across it (figure, above); or

- With the power removed, remove the valves and check each of the heaters using an ohmmeter, though be careful doing this on the low voltage (eg. 1v) valve heaters as these can be blown by the voltages in some multimeters, or, better still, use a valve tester.
- If an open circuit heater is identified, replace that valve (but note the caution below first).
- Sometimes a valve heater filament can be 'intermittent' opening and closing as the filament heats and then cools (acting a bit like a bi-metal strip type 'flasher' on a string of old-fashioned Christmas tree lights) this can be fast or slow: when slow, the radio can work for a few seconds or minutes and then cut out for a while and then re-start the dial light often blinking on and off in the process. If this type of fault is present, the meter method noted above can be used to check which valve is acting up, alternatively a small neon panel indicator lamp can be connected across each heater in turn the neon lamp will illuminate when it is connected across the valve with the intermittent heater filament as the filament opens.

- Another symptom to watch for is one or more valve heaters glowing too brightly while others are unlit. This condition is indicative of a heater to cathode short in a valve (see figure, below).



Of course, a valve heater may have failed for a reason other than old age or fatigue – it may have blown due to

How a cathode-heater short circuit can cause some heaters to go out while others glow overbrightly.

over-voltage, possibly a result of a defective series or parallel resistor, ballast resistor, thermistor, or even the dial light when included in the heater chain. Therefore check these components and remedy any defects before installing the new valve.

- Next, suspect the high wattage dropper/ballast resistors, especially if there are variable (sliding) taps present on them – these can become high-resistance or open circuit as these components endure a lot of heat-related stress. With the <u>power removed</u> from the set, a simple ohmmeter check is all that is normally needed here to check these components are within tolerance.
- If a solid state (metal, selenium or silicon) rectifier is present instead of a valve rectifier, eg. as in the S.670A, suspect this next (selenium rectifier failure is usually easy to smell...). <u>With</u> the power removed from the set, remove one end of the rectifier and test using an ohmmeter: high resistance in one direction, low resistance in the other. If faulty, check the smoothing capacitors and other

Above: an S.840 chassis: better than your typical AC/DC set construction... below: my Northern Electric 'All-American-Five' (much more typical)

Multi-tapped ballast resistor

circuits in the radio for a short across the HT line that could have caused the failure and correct that before replacing the defective rectifier.

- Next up are the HT smoothing capacitors: if the set is working but loud hum is present (and is largely unaffected by the volume control), or the set is 'motorboating' or squealing, this may indicate one or both of these components have reduced in capacitance or have gone open circuit. With the power removed, check by removing one end of each in turn from the circuit and test using an ohmmeter - on connecting the meter (observe correct polarity), a sharp 'kick' of the meter needle should be observed, with the measured resistance then increasing over a few seconds to a value of 200kohms or more if the components are working in a satisfactory manner. Instead of doing this, if you have a similar value and voltage rating component handy as a spare, connect this spare across each of the smoothing capacitors in turn (with the power removed) and, with the set then switched on, observe whether the hum disappears - if it does, replace the capacitor being bridged using a replacement with approximately the same capacitance value and at least the same working voltage rating (and do not be tempted to just solder it in across the old unit – take the old one out of circuit!). If resistance checks indicate that a capacitor has shorted, and no fuse is fitted (often the case in low-cost sets) this will likely have blown the rectifier and/or the associated resistor(s)/choke: all these components should then be checked and replaced if necessary.
- Another cause of loud hum can be a partial heater to cathode short on one of the valves – this condition can be checked in a valve tester or (better) by substitution for a known good valve of the same type.
- If the set is working reasonably well, but hum appears only when a station is tuned in ('modulation hum'), suspect a line filter capacitor if one is fitted, if not, suspect a bypass capacitor. Simply replace the suspect part with a component of similar capacitance value and at least the same working

A 'Typical' Eddystone AC/DC Set

voltage.

The circuit diagram of an S.870A set is shown at the end of this article and is described below. This particular model effectively represents the Eddystone version of the 'All-American-Five' set outlined above, here comprising:

A 12BE6 mixer-oscillator front end: • nothing too extraordinary in the circuit design here - an electroncoupled oscillator circuit - except

EDDYSTONE MODEL "870A" RECEIVER

Introduction

The EDDYSTONE Model 870A is a high performance receiver designed primarily for personal use in situations calling for compactness and wide coverage. The receiver tunes the long, medium and short wave bands, has an internal loudspeaker and may be operated from any standard AC or DC mains supply. Ease of tuning is assured by the gear driven drive mechanism which is provided with a vernier bandspread by the gain actual area inclusion which is provided with a variant consepted device for accurate station logging. Troublesome mains borne interference is reduced to a minimum by an extremely efficient internal filter circuit not normally found in receivers of this type.

The receiver may be used in all areas regardless of climatic conditions and this feature together with the small size of the unit makes it particularly suited for cabin use aboard ship.

The five frequency ranges are as follows :----

Range 1	7.5 Mc/s. to	24 Mc/s.	(40 to	12-5 metres).
Range 2	 3-2 Mc/s. to	7.5 Mc/s.	(93-9 to	40 metres).
Range 3	 1-3 Mc/s. to	3.5 Mc/s.	(230.7 to	65-7 metres).
Range 4	 510 kc/s. to	1400 kc/s.	(588-2 to	214-3 metres).
Range 5	 150 kc/s. to	380 kc/s.	(2000 to	789-4 metres).

the aerial input arrangement is more flexible than in the 'All-American-Five' sets; the aerial and oscillator tuned circuits are switchable for the number of frequency ranges covered (in this case five) and a wave trap is present, designed to reject IF frequencies that may be picked up by the aerial system. However, the main thing that sets it apart from the cheaper AC/DC sets is the quality of the parts used in its construction and its careful layout, designed to allow useful and reliable operation on short waves up to 25MHz;

- A 12BA6 IF amplifier: again, nothing extraordinary at all (except for the superior quality of the IF transformers);
- A 12AT6 AM detector, AGC and 1st audio amplifier: separate diodes are used for detection and AGC circuits (many low-cost sets used a single diode for these functions);
- A 19AQ5 audio output stage of conventional design though the 19AQ5 valve choice is a bit odd see article in Lighthouse Issue 92, pp36 for an explanation; and
- A 35W4 half-wave rectifier in the power supply circuit: the main improvements over a standard domestic AC/DC set's supply being the installation of an effective supply-line noise filter and two thermistors, the latter providing both surge protection and a degree of HT stabilization to the set, this being desirable for improved oscillator stability when the set was used on its higher frequency ranges (up to 25MHz).

Although housed in a 'miniature' case, the quality of the tuning mechanism, chassis, front panel, outer case and other components used in this and other Eddystone AC/DC models were of the usual Eddystone high standard. Thus many of these sets are still in use today and some have become very 'collectible' – even for the non-EUG'er - especially the S.870 sets that were produced in a variety of colours, work well and look very 'cute'.

Discussion

So, there you have it, AC/DC sets 'in a nutshell'. Whole books have been written on them (eg. 'Practical Radio Servicing' by Marcus and Levy) and whole chapters in others (see references below), demonstrating just how popular these sets were in the forties through the early sixties, when the market for them eventually disappeared due to the introduction and popularity of broadcast and multi-band AM and FM transistor sets – of

course Eddystone twigged this and introduced various ranges of transistorized sets themselves (ok, I admit it, I own an EC10!); until then however, the AC/DC set was the 'bread and butter' of many radio service engineers of this period.

Gerry O'Hara, G8GUH, Vancouver, BC, Canada, December, 2006

Acknowledgement

Pat Jones, a member of SPARC (<u>http://www3.telus.net/radiomuseum/</u>) for allowing his dinky little S.870A to pose (albeit fully clothed) for this article.

Some Useful References

- Practical Radio Servicing, W Markus and A Levy, 1st Ed. 1955 (this book is devoted <u>entirely</u> to servicing AC/DC radios all 559pp of it! this type of radio was just so prevalent in those days...)
- 'Radio-Detect-O-Scope' Poster, W. Marcus, 1957 (in part reproduced in this article)
- Radio Servicing Made Easy, L.C. Lane, Vol. 2, 1962, (esp. Ch.s 6 & 10, a figure reproduced in this article)
- Elements of Radio Servicing, W Markus and A Levy, 1955 (2nd Ed. esp. Ch. 18)
- Profitable Radio Troubleshooting. W. Marcus and A Levy, 1956

Radio and Television
 Receiver Troubleshooting
 and Density Chinematic 9, 1-1

- and Repair, Ghirardi & Johnson, 1952, (esp. Ch. 7, some figures reproduced in this article)
- Radio and Television Receiver Circuitry and Operation, Ghirardi & Johnson, 1951 (esp. Ch. 10)
- Radio and Audio Servicing Handbook, G.K.
- King, 2nd Ed., 1970 ('Procedure Charts' #1 to #3 reproduced in this article)
- Downloads of Eddystone manuals from the EUG web site, the EUG 'Ultimate Quick Reference Guide' (2nd Ed.) and specific articles in Lighthouse including:
 bject Issue Page

Subject

alignment frequencies	 3
battery powered	
bfo, fitting	
	 28
brief notes (Bert Swanley)	 14
condenser, leaky	
coils, long wave, fitted	 15
dial light failure	 18
distortion, reduction of	 13
drifting	 5
dropper resistor, corrosion	 20
faults, common	 6
frequency coverage, gap in	 3
featured receiver	 8
hum	 14
	 15
identification vis a vis 659	 20

Subject	Issue	Page
Merchant Navy, popular with	82	39
Mimco equivalent 79	15	
differences	43	28
modifications, found on set	21	18
Montreal, used in	55	39
overhaul	10	21
phasing control improvement	84	20
p.s.u. details	90	31
rectifier, substitute	21	8
Seafarers' Receiver	28	28
testimonial	75	15
British West Indies	57	34
M.V. British Bombardier	59	24
M.V. La Pampa		
tuning, backlash		
valves		
heater short	83	18
substitutes		
Substitutes		
UAF42 in lieu of UAF41		
670/1	45	10
Mimco 2232B	F	2
frequency coverage compared with Marconi variants		
heater chain problem		
low gain cured	74	10
670A		10
avc not working		
audio, low		
condenser problems	50	36
dial lights		
fitting of		
lack of		
drive cord comments		
early model acquired		
electric shock	62	30
fan, fitting		
faults, common	6	9
	17	6
featured receiver	33	5
ferrite core, loose	27	22
Gulf war, monitoring of	32	17
hum	4	4
hybrid set	44	24
magic eye		
improvements	96	22
restored to life		
mains		
switch, faulty	56	5
voltage, using down to 80v	23	
Marconi variants		
comparison		
		12

Subject

Issue Page	
------------	--

modifications	
per Short Wave Magazine	 11
overheating	
rebuilding	
after transistor conversion (!)	
repairs	 14
sensitivity, low	
selectivity, poor	 3
thermistor	 9
tuning, vernier scraping dial	 29
valve sockets, dirty	
valves, new fitted	 4
670/670A hybrid	 16

670C

a.c. only conversion	27	.7
acquired by Graeme Wormald (at last!)		
acquired by Ted Moore	75	.7
· · · ·		
aerial input ohms	34	2
audio fault cured, Graeme Wormald		
bfo, fitting		
faults, common		
fault on one band		
featured receiver	27	5
hum, curing	19	.6
knobs, size of		
magic eye improvements	96	22
Marconi variants	96	36
Merchant Navy, popular with	82	39
originality	34	10
p.s.u. details		
restoration (Marconi version)	64	47
rf gain, noisy	13	12
tape recorder output		
C/1		
MIMCO 2232B	57	.9

advert		
factory		31
Webb's radio		
bfo		
intermittent, curing	74	
modification		13
Braille set		
description		15
dropper resistor		
corrosion		29
substitute for		21

Subject Issue Page i.f. transformers, query as to......20 in use with member 20 years8 840A AC only modification......14 a.f. driver stage, fault & cure27 gain, not fully operational35 avc Brimistor & new bulbs......5 dial light drive cord, restringing......17 headphones usage fault15 hum instability on strong signals25 magic eye, problems resolved......4 repairs

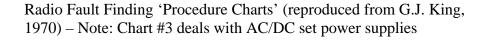
Subje	ect		Issue	Page
	restoration		10	12
				19
	r.f. & oscillato	or realignment		
		e		
		nt		
		/er Sangean		
		blem		
	transformer, i		04	00
		of		
		nember		12
	valves			
	query a	as to bases	51	29
	ÚY41 I	oypass		20
	840C, compa	rison with		8
840C	, -		-	-
	acquired by T	Fed Moore	75	8
		nt		
	advertiserner			
		ance of correct impedance		
		ed		
		n net		
		noise at zero beat		
	,			
	dial illuminati	on		
	drive cord		11	5
	dropper resis	tor, faulty connection	56	5
	eBay			
				2
				14
	fan, fitting			
	fault		•	
		วท	17	6
		ttent		
		tuned		
		iver		
		ifting		
		on mod		
		ice poor		
	magic eye fa	ult		
		ly wired		
	motorboating	-		21
	oscillating		42	31
	-			

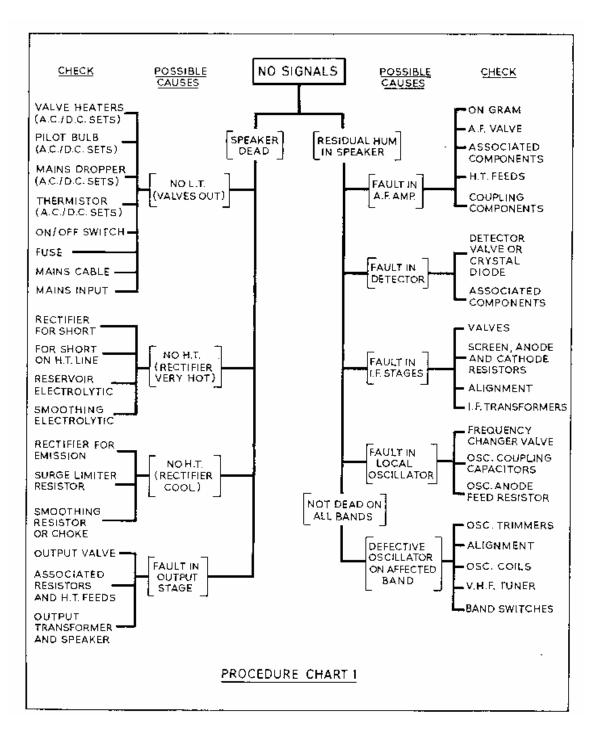
Subject Issue Page repairs resistors, explanation of9 r.f./i.f. gain, combined control5 stability 870 advert Antarctic, used in (Peter Chisholm)......32 deafness, possible causes10 models acquired (Ted Moore)15 after transistor conversion11 Roger Bebbington 10i scale reversed on these models.....10 transistor conversion, inferiority of......14 valves comments on (Ross Paton).....7 870A advert

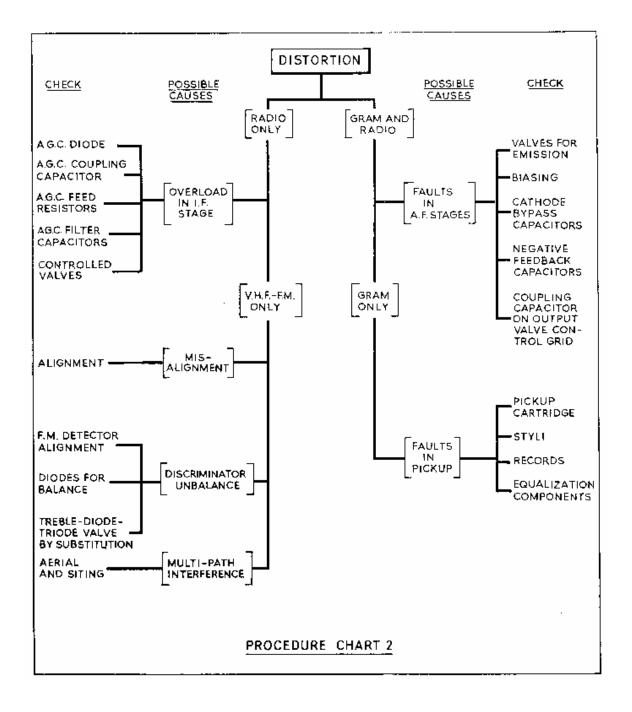
Subjec	t	lssue	Page
k	prief description	30	7
	proadcast reception, transatlantic		
	condenser, electrolytic, failure of		
	drifting, cured		
	dropper resistor, replaced by transformer		
	Bay		
	·	86	26
		86	39
		90	16
f	ault, intermittent (dry joint)	13	4
f	eatured receiver	36	25
i	n use	40	17
		62	8
i	solation transformer mod	71	13
r	nodifications		
	mains transformer	88	59
	to improve (Andy)	41	3
	putput transformer, substitute		
	power supply details		
	QRM, eliminates		
	ealignment, aerial tuning stage		
	eceiving ssb signals		
	ejuvenated by Ted Moore	76	11
870A (
	eliability & general comments		
	esistors replaced		
r	estoration		
		-	-
	selectivity improvement mod		
	ssb reception mod		
١	/alve failure		
\ 909	NVS, obtained from	28	10
á	acquired from Sweden by member (Anthony Richards)	89	7
	power supply details		
	prief description		
	diode replacement		
f	eatured receiver	31	1
ł	num, curing	46	2
r	D.S.U.	18	1
	quest for & acquisition (Anthony Richards)		
	estoration		

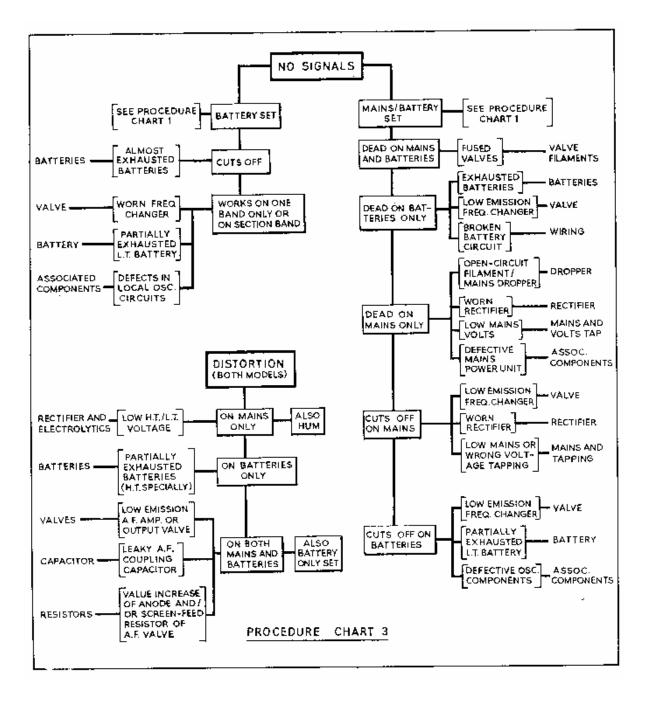
Some web-based articles/resources on subjects covered in this article include:

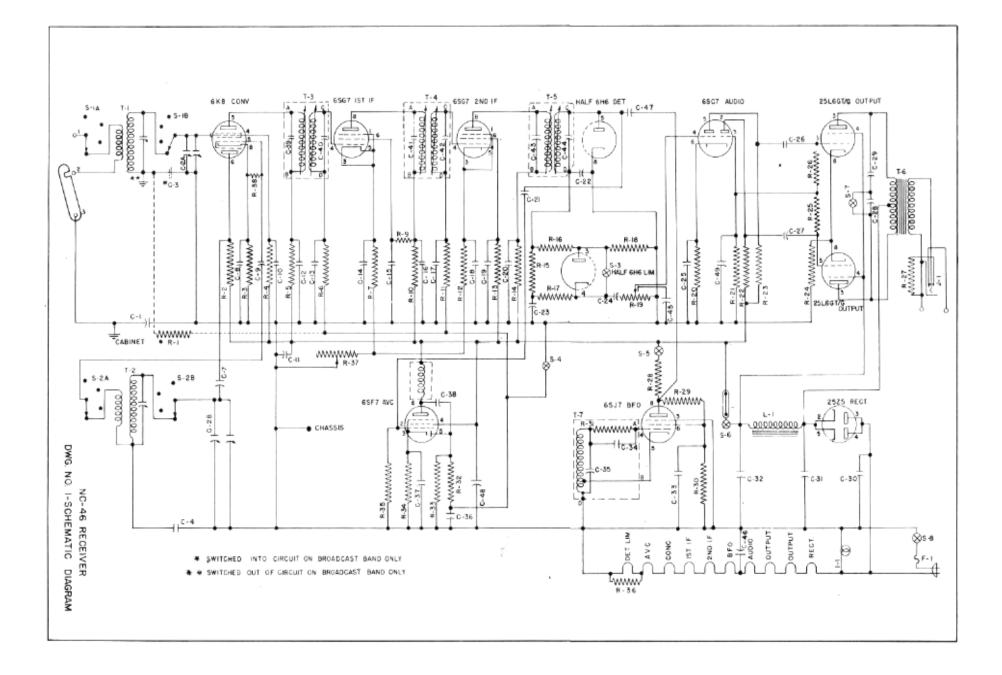
- <u>http://www.cs.uu.nl/~gerard/RadioCorner/</u> (see AC/DC set links)
- http://www.cs.uu.nl/~gerard/RadioCorner/Sets/Eddy670.htm
- <u>http://www.dxing.com/</u>
- <u>http://www.io.com/~nielw/nat_list/nc46.htm</u>




Underneath an S.840A chassis - very similar construction to an S.740 AC-only set...

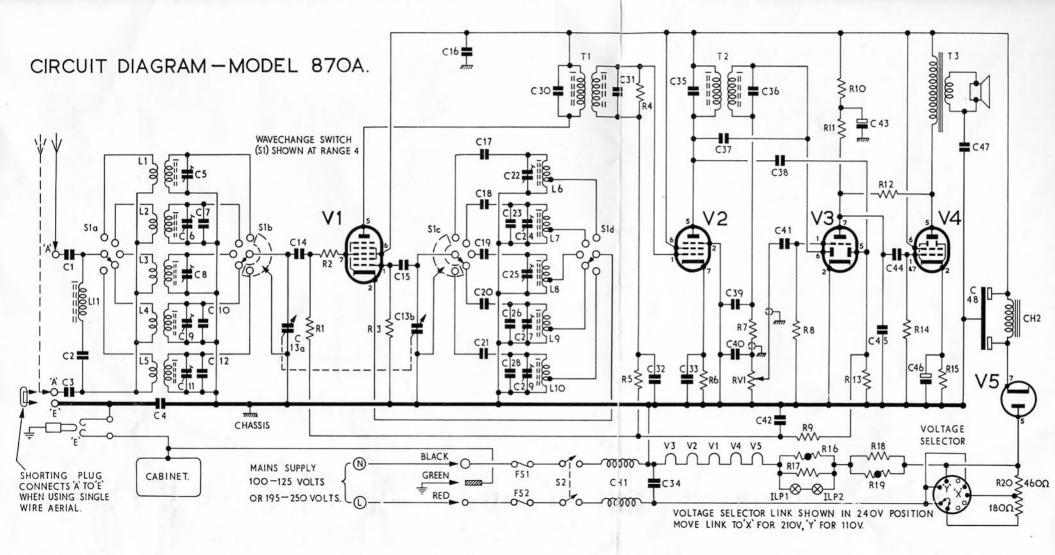


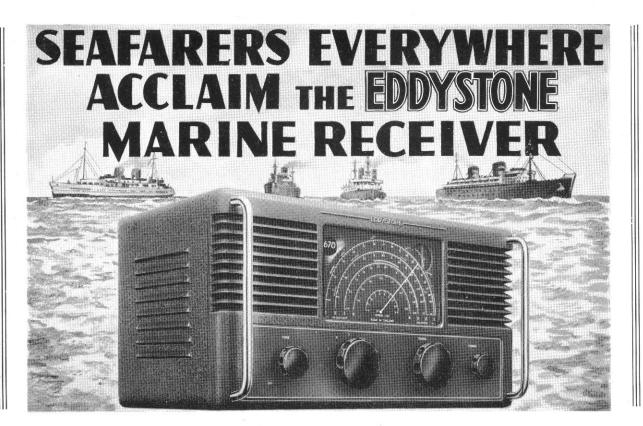

An S.670 inside and out: note the finned selenium rectifier (circled) beneath the multi-tapped dropper resistor (this set is missing its circular logging scale plate and has a 'mongrel' knob)



Above: a 'pristine' S.840C chassis and below: an S.840A looking as good as it did in ~1954 (alas, neither are in my collection)

Below: looks like someone is getting a 'new-in-box' S.840C for Christmas (alas, not me)





The National NC-46 circuit: one of the more complex AC/DC sets in my collection

Common Radio Trouble Symptoms and Probable Location of Bad Tubes and Bad Parts

Symptom	Abnormal Test Canditian	Look for	Symptom	Abnormal Test Condition	Look for	Symptom	Abnormal Test Condition	Losk for
Set does not ploy. Tubes do not light.		Dead outlet. Defective line cord or plug. Tubes in wrong socket (check 125Q7). Open tube heater.	Set does not play; signal check places trouble before the first of stoge.	None.	Open coupling con- denser C-15. Open volume con- trol #-16. Short in the volume-	Wask reception.		Wesk tubes, Missilgement, Open over byposs con- denser C-14, Coloring tubes
		Defective heater wiring.			esetral wiring.	Dillones reception		Defective tubes. Open 14 filter condenser
Set does not play. Tubes light.	Vohope at rectifier cathode checks zero.	Dead rectifier tube (prob- ably caused by a shorted input filter condenser C-	Set does not play.	Ef plate voltage is zero.	Open I-I sutput trans- former.			C-16. Leaky or shorted and by- pois condenser C-14.
	Station States	10).		1.f cathode voltage is high.	Open circuit from L1 coth- ade to common negotive.		None.	Defective loud
Set does not play. Tubes light	Vallage at rectifier cathode is high. Vallage at 8 plus is pera.	Open filter resistor #10 (probably counted by shorted output filter con- denser C-11 or a short in the 8-plus circuit).		Vohoge checks give nor- mail readings.	Defective if tube. Defective detector tube. Opens or shorts in the if transformer. Open or shorted volume	quality.	Plate voltage on second a-f tube is low; control grid on second a-f tube shows positive voltage.	speaker, Short or leakage in coupling con- denser C-12.
Set does not play. Tubes light.	Valage of rectifier cothode is low. Valage at 8 plus	Shurted output filter con- denser C-11. Shurt in B-plus circuit.			Control. Shorted i-I filter condenser C-16.	t t	Cathode voltage on second a-f tube is high.	Leokoge in plate condenser C-9.
	is zero. Filter resistor #-10 overhapting.		Set plays internit- tently-pilot long		Tube heater that opera in- termittently (check with		Plate voltage on first a-f tube is low.	condenser C-17.
- A start store	Flate valtage on second a-f	Dead second a-l	blinks on and off.		neon lamp tester).	line mul	Grid voltage on first o-1- tube is low.	Leakage in coupling condenser C-15.
iet does not play; signal check places trouble	nube is 120 volta) cathode voltage is zero.	tube.	Set hums.	Rectifier-cothode voltage low (op- proximately 50	Open input filler con- danser C-10.	Set develops poor tone quality al-	A positive voltage develops on the second a-1 grid.	
in the second of stope.	Plate voltage on second a-l	Open sothode resis-		value		ter ploying for owhile.	None.	Speaker warping
	tube is 120 volte, cathode voltage is high (20-30	tor 8.9.	Set huma, squeals, or motorboots.		Open output filter con- denser C-11.			due to lock of ventilation in sobinet. Sherts in tuning condenser.
	volta). Hate voltage on second a-f tube is zero; cathode volt-	Open output trans- former primary L.9.	Set plays-hums on some stations.	14	Open line condenser C-13.	No stations over part of the dal.		Weak converter tube. Leakage in socillator
	age is low (2-3 volts).	to the proof of the	Hum.		Open loop winding L-2.			tuning condenset. Wrong value of oscillato
	Plate voltage on second a-f	Shorted plate con-	Modulation hum.		Defective converter tube.			grid leak R-4.
		denser C-9.	Set humi.	Vallages are law.	Open filter con- densers.	Squesk when tuning certain sta-		Image-frequency interference (realign).
No.	Vallage check shows normal readings.	Open or shorted voice coil in the		None	Defective tubes.	Squeak or oscillation.		Open output liter con-
	All and a second se	loudipeaker.		Hum clears up when checking grid voltages.	Open grid resistors #15 or #15.			denser in the power to
	Voltage check shows normal readings; speaker tests as good.	Short in the grid circuit of the sec- ond out tube.	Low volume.		Weak tubes. Defective speaker	Developed in cont	junction with	Open ground connection to shielding. Open ave bypass con-
et does not piny; signal check places trackle in the inter-	Vallage check shows cormal readings.	Open coupling con- denser C-18.			or output trans- former. Leakage in plate condenser C-17.	Developed (a cost) the McGraw-Hill T Changer Servicing	V. Radio and	damar C.14. Open 11 filter condama C.16. Take shielding is missing o poorly grounded.
stags coupling consult.	Plate voltoge on first a-l tube is zero.	Shorted plate con- denser C-17.	Set plays weakly.	8 vologe below normal	Weak rectifier tube. Leokage in filter sonders- ers C-10, C-11.			Incorrect wire dress. Misolignment.
Set does not play, signal check	Plate voltage on first o-l tube is sero.	Open plate resistor #-17.	Set plays weakly.	8 voltage normal.	Open output filter C-11.	Naise.		Condenses plates tauching- Need for outside peternia.
places muble in the first pu- dio stopp.	Voltage check shaws normal readings.	Dead first a-f tube.	Weak reception.		Weak converter tube. Misalignment	Noiry reception.		Defective tubes. Convenies in 2.4 transformer
	Voltages normal: Ent a-f	Short in the grid cir-		Station Station	Open avs candemar C-14. Need for outside asterna.			windings

PERSONAL CABIN FOR SE

PROOF of the efficiency with which the Eddystone "670" Marine Receiver fulfils the Seafarer's particular requirements for a radio receiver is amply demonstrated by the many congratulatory letters which are reaching

S.I.G. "The '670' receiver I have had now for five years is fully to my satisfaction and I have had more than its money's worth of pleasure out of it. I am in Anglo-saxon-Dutch section and many of my friends have bought Eddystones lately in Hong Kong and Singapore."

K.W.N. '' I have used one of your Eddystone '670' receivers for eighteen months and have been very pleased indeed with the results obtained in the Near East and Mediterranean Sea. Among my colleagues the '670' is a very popular ship's receiver and we are all very satisfied with its good performance in all areas."

H.J.M.A.W. " At the same time I want to let you know once again how content I am with your Eddystone, and even after having the set now for nearly three years, I am still as happy with it as the first day it was in my possession."

A.B. "I am pleased to say that my Eddystone ' 670 ' receiver has been giving yeoman service !

W.H.B. "I may state I am very pleased with the results being obtained from my Eddystone '670 ' receiver. I have owned many sets and now at last I am satisfied with the performance given by this wonderful receiver."

H.J.S. "For nearly two years I have been the proud owner of one of your Marine receivers. It has given me sterling service all over the world and has pro-vided me with many hours of listening pleasure."

F.A.W. "With my Eddystone ' 670 ' receiver I can receive the B.B.C. Overseas Programmes almost at any time. The volume is good and the tone excellent.

G.S.H. (U.S.A.). "I had the pleasure of listening recently to one of your '670 ' Marine receivers and must say the performance is an excellent recommenda-tion of your braducts." tion of your products."

O PROD

D.S. "Your products are held in high esteem by many of my radio officer acquaintances."

to-day and is money well spent. I am very proud of my receiver.

R.T. "' I am a user of one of your Eddystone Marine Receivers Model ' 670' and have recently acquired a record player for use with the set. As far as I can remember the receiver was bought late 1948 and I might mention that it has given extremely satisfactory service." extremely satisfactory service.

.K. "I would like to say that this receiver has given me wonderful service in all parts of the world and I wish I had bought one earlier.

provided me with excellent reception and I have had no trouble of any kind." K.Y. "Three years ago I purchased an Eddystone Marine receiver.

S.S. ______, " The '670' receiver has been working very satisfactorily and is a really wonderful set in my opinion. On board ship with the mains suppressor there is no interference whatsoever and the tone is indeed grand."

M.V. NEAERA. "I have had excellent results from my '670' receiver. Since joining this ship I have had perfect results and the radio far surpasses any I have heard at sea before, including a very expensive ______ and similar sets."

Manufactured ATT **C O** BIRMINGHAM WORK ENGL ONE

CABLES: STRATNOID BIRMINCHAM

FACTS CONCERNING THE EDD

A personal radio receiver for use at sea must necessarily differ from a domestic receiver if the special requirements of the Seafarer are to be met. For long periods the ship may be outside the range of medium-wave broadcast stations, in which case satisfactory reception can be obtained only from short-wave transmitters. Therefore, to obtain programmes with real entertainment value, at almost any time and place, consistently reliable short-wave reception must be an essential feature of a seaborne receiver.

The electric supply may vary when changing ships, and occasionally, the receiver may be wanted for use ashore. A truly Marine receiver must therefore be designed to operate off either DC or AC mains of various voltages, with the minimum of adjustment.

Normally, the loudspeaker built into the receiver will be used but, on occasions (e.g., when it is desired not to disturb sleeping personnel) headphones or a pillow speaker can easily be plugged in, the internal speaker being automatically silenced.

Cabin space is restricted and it will be desirable to have a receiver which is compact and self-contained. Robust construction and full tropicalisation are other qualities called for.

The Eddystone "670" Receiver is specifically designed for Marine use. It meets all the requirements outlined above and is unquestionably the ideal receiver for those who "go down to the sea in ships."

The name Eddystone is world famous for performance and reliability and the "670" Receiver upholds that tradition to the full.

FREQUENCY COVERAGE

Four switch operated coil ranges cover the principal short and medium wave broadcast bands. The exact coverage is :---

Band 1	 30-12.8 megacycles (10-23.5 metres).		2.75–1.2 megacycles (110–250 metres).
,, 2	 13-5.8 " (23.1-51.7 metres). "4…	1220–522 kilocycles (246–575 metres).

CIRCUIT AND VALVES

A seven valve (plus selenium rectifier) superheterodyne circuit is employed, with modern miniature valves, which have been specially selected to give optimum performance. The R.F. stage ensures results well above the average and is particularly beneficial when long distance reception is called for or when only a short aerial can be used.

The push-pull output stage, in conjunction with negative feedback and a high efficiency speaker, gives adequate volume and excellent quality. The speaker connections are so arranged that it is an easy matter to use an external speaker or headphones. Sockets are provided for the connection of a gramophone pick-up. All necessary plugs are included.

TUNING MECHANISM

A gear-driven, flywheel-loaded mechanism, having a reduction ratio of approximately 140 to 1, controls the tuning which is smooth, positive and free from back-lash. In the top right-hand opening of the dial is an auxiliary bandspread scale which expands each range to the equivalent of ninety inches. It is thus possible to re-set the tuning quickly to any station previously logged.

SAFETY PRECAUTIONS

The mains leads and all plugs and sockets are completely insulated. Particular attention has been given throughout to insulation, and the metal cabinet may be directly earthed. All components are of the tropical grade, so necessary in a set of this kind which is almost sure to be used in every conceivable variety of climate and weather.

670" MARIN

STONE "670" MARINE RECEIVER

POWER SUPPLIES

The "670" Receiver can be operated off mains having voltages within 10% of 110, 200 or 230 volts. In actual fact, good results can be secured when the mains voltage is down to 90 volts or even less. It is immaterial whether the mains are AC or DC. On AC supplies, power rectification is by a selenium rectifier. A device known as a "Thermistor" prevents high initial surges when switching on, and the dial lamp lights up gradually, without any tendency to burn out.

GENERAL CONSTRUCTION

The aluminium diecastings which are used for the front panel and tuner unit chassis form an extremely rigid foundation for the receiver as a whole. The sub-chassis are made of heavy gauge brass or steel, finished to prevent corrosion and securely attached to the main castings. The cover is steel, thoroughly rust-proofed and stove enamelled a dark ripple brown of pleasing appearance and possessing extreme durability. Chromium plated handles are fitted to the front panel and serve both for protection and for carrying the receiver.

Should it be necessary to obtain access to the interior, the receiver chassis can be readily detached from the cabinet by simply removing four large screws at the rear.

PERFORMANCE

The performance is first class in all ways. Special attention has been paid to the sensitivity, selectivity, image ratio and other technical characteristics, to ensure the finest possible results.

MINIMUM INTERFERENCE

The metal cabinet, in conjunction with the internal screening, has two distinct advantages. Direct pick-up of electrical interference is eliminated and there is no interaction between the "670" Receiver and other receivers that may be in use in the ship.

With the use of the Eddystone Filter Unit, mains-borne interference from electrical machinery is reduced to a minimum, whilst still better results are obtainable when the Eddystone Doublet Aerial is used. The aerial terminals are arranged to take either a doublet or a single wire aerial.

CONTROLS

The controls comprise :---Tuning Knob Band Selector Knob Volume Control Combined Tone Control and On/Off Switch

WEIGHT AND DIMENSIONS

Weight : 32 lbs. unpacked Overall length, $16\frac{3}{4}$ inches : depth, 10 inches Height, $8\frac{3}{4}$ inches

Comprehensive Instructions and a 12 months Guarantee are provided with each receiver.

E RECEIVER - a1 in every respect!